

Revision Control for Sysadmins

Presented at the
MUUG General Meeting on 2011-Sep-12

Adam Thompson, athompso@athompso.net

mailto:athompso@athompso.net

Who
 Designed for developers:

 Version control, which led to
 Software configuration management, which

led to
 Build management

 System administrators can also use:
 Version control (almost anywhere)
 SCM (complex situations)
 Build management (large-scale deployment)7

What – Version Control

 Designed to keep track of changes to a file
 Most allow multiple people to simultaneously

work on multiple versions of a file, then merge
their changes later

 For sysadmins, allows you to track changes to
config files

 Can be used to back up and synchronize files,
too

What – Software Config. Mgmt.

 More complex than revision control
 Manages entire filesets at a single time
 Includes path information
 Includes metadata
 Includes build-environment information
 Usually client-server, designed for teams

What – Build Management
 Evolution of SCM
 Includes intelligence about building the project

 Deploys the product, e.g. to a J2EE app
server

 Now includes "Application Lifecycle
Management"

 Team-oriented
 Covers workflow for sign-offs, approval,

testing, etc.
 Usually complex

 Supports "Continuous Integration"

Scope of presentation

 I'm only going to talk about Revision Control
software

 Everyone can find a use for it
 Easy (easier, anyway) to understand, set up

and use

Where

 ASCII configuration files
 Unicode and National Character Set files are

also generally supported
 Binary files are typically unsuitable, but are

generally supported without diff(1) capability
 /etc/*
 ~/.bashrc, et al.
 ~/Music

 Yes, really: use CVS/SVN/git for
synchronization!

When

 Manually, before and after each edit
 Manually, after testing
 Automated, from cron(8)

 Daily snapshots
 Automated, from startup scripts

 "Last-known-good" snapshots

Why

 What changed yesterday?
 What changed on 2010-Feb-06?
 Who changed it?

 This is more complicated to set up
 Easy rollback of changes
 Easier to test new changes and apply them

selectively

How - Origins

 SCCS – Source Code Control System
 First shipped with AT&T System III PWD in

1972, can still sometimes be found in SVR4-
derived OSes.

 File format still used in other products today
 RCS – Revision Control System

 Developed for BSD UNIX® in 1982, can be
found almost everywhere. Part of the base
system for many OSes.

 Command invocation syntax is still used by
many systems today

How – Evolution & Revolution

 CVS – Concurrent Version System
 Client-server version of RCS

 SVN – Subversion
 "CVS done right"

 git – completely New & Different!
 Written by Linux Torvalds to manage the

Linux kernel source

How - Others

 There are many other version control systems
 Many are commercial, many are cross-platform
 Some prominent systems:

 Mercurial
 Bazaar
 BitKeeper
 Visual SourceSafe
 Rational ClearCase

RCS

 The only one I'm going to explain is RCS
 Trivial to set up
 Easy to use
 Provides concepts necessary for

understanding CVS, SVN, etc. (but not git)

RCS - Repository

 RCS tracks one file at a time. Period.
 RCS creates a "revision group", contained in a

file named "filename,v".
 If a subdirectory called "RCS" exists, the ",v"

files will be placed inside it.
 Each ",v" file stores the latest version of the file

and all the reverse-deltas.
 Easy to recover some of the file even with a

damaged repository

RCS - Initialization

 Strongly recommend using an RCS/ directory
 The first rcs(1) command you run on a file will

initialize the revision group.
 Manually do so with "rcs -i"

 Avoids being prompted for the file description
during checkin/checkout

RCS – Basic Concept

 Check In / Check Out: kind of like a Coat Check
at a restaurant or concert

 Checked In:
 You don't have it
 You don't see it
 You have to check it back out to use it

 Checked Out:
 You're responsible for it

RCS - Locking

 A checked-out file can be locked or unlocked
 Locked (for modification): read/write
 Unlocked (for other use): read-only

 Leave files unlocked normally
 Only lock them when you need to make

changes
 Prevents accidental, untracked changes

RCS – Basic commands

 "ci -u <filename>"
 Checks IN a new version of the file, then

immediately checks OUT an unlocked copy.
 "co -l <filename>"

 Checks OUT a locked copy for modification

 That's all you need to know!

RCS - differences

OK, there's another command you need to
know...

 rcsdiff(1)

 Shows the differences between any two
revisions of the file

 With no options, diff(1)s the current
working file against the last-checked-in-
version. (i.e. "What have I changed so far
this time?")

RCS - Tags

 If you put the magic string "Id" and "Log"
into your file, RCS will automatically fill them in
with useful information

 See co(1), under KEYWORD SUBSTITUTION
for more details

Typical uses

 /etc/httpd/httpd.conf
 /etc/openldap/slapd.conf
 /etc/postfix/main.cf
 /etc/*, really...
 /usr/local/bin/my-custom-script.pl

Limitations

 RCS only handles one file at a time
 No notion of "projects"
 Revision history is (deliberately) vulnerable to

tampering
 Poor scalability

 I/O scales as O(N) with file size, # of
revisions, size of reverse-diffs

 I/O scales as O(N^2) with # of active
branches

 Single-user-writable model

Demo

 Maybe this will work...

Q&A

 I have to leave quickly tonight
 Several of our audience members are familiar

with version control systems (mostly CVS and
SVN, though)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

