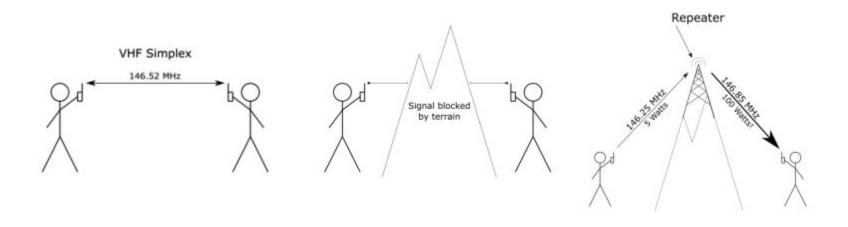
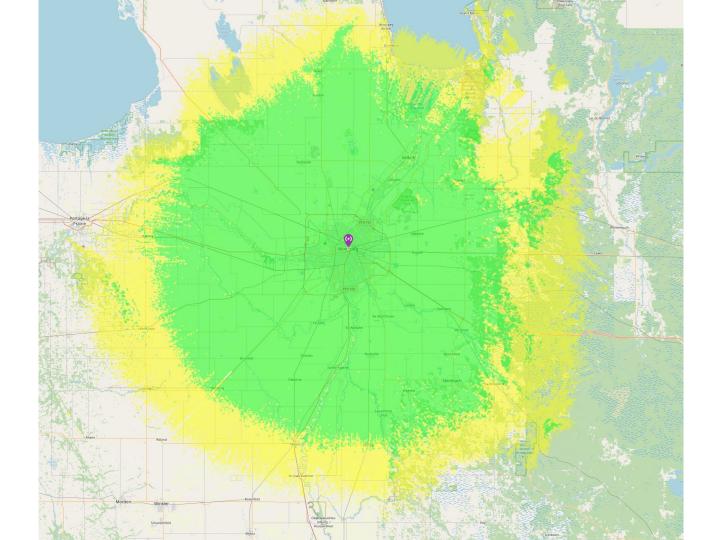


AllStarLink

Presentation by


Wyatt - VE4WDZ Dan - VE4DRK Derek - VE4HAY


Introduction to VHF and UHF Radio

- VHF Radio (30MHz 300MHz) and UHF Radio (300MHz 1GHz) provides reliable line-of-sight communication.
- Moderate obstruction to the signal path such as buildings and trees does not block reception.
- Larger obstructions such as multiple buildings or differences in elevation will block signal propagation.

What Is A Repeater?

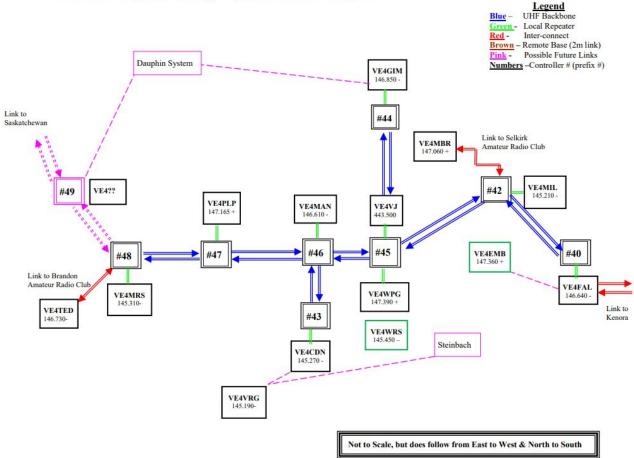
- A repeater is a radio transceiver capable of full-duplex operation. Signals received are retransmitted at a known frequency offset.
- By locating a repeater at a high elevation with low obstruction, stations can communicate through the repeater that would otherwise be blocked.

Beyond Single Repeater Coverage

Increasing repeater coverage is a problem of diminishing returns.

Getting higher than the tallest building, or building a taller tower is not usually viable.

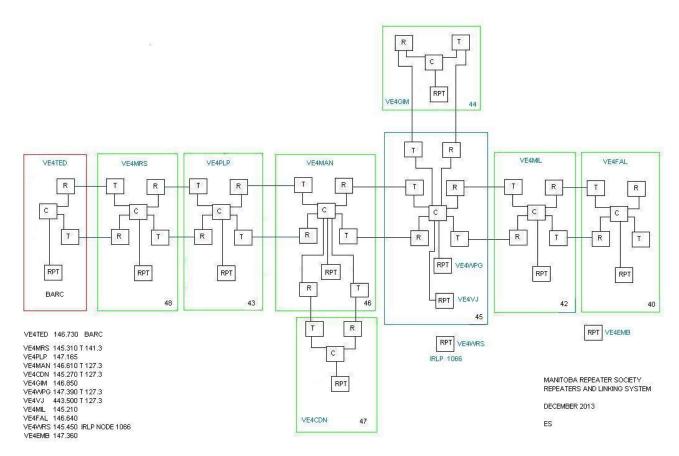
A more effective method is to add another repeater and double your coverage area.


But how do we link more than one repeater together?

Repeater Linking In The 1980's

- The old Manitoba Repeater Society initially only had a couple of standalone repeaters.
- When the linking system finally started out, it was a Hub and Spoke system operating simplex.
- VE4VJ, on UHF was the hub, and all the VHF repeaters would connect to it on UHF.
- Typically hams did not use UHF for connection to the repeater system. Everything was on VHF.

Repeater Linking In The 1990's


- Manitoba Repeater Society linking system was upgraded and more repeaters were linked.
- The linking system was changed from a Hub and Spoke to a backbone network of UHF links
- The the controllers were upgraded to allow for multiple ports (radios) to be connected at each repeater site.
- Repeater sites and their UHF links provided the backbone of the linking network.

Manitoba Repeater Society - System Network Diagram

Challenges Facing The UHF Backbone System

- This backbone system worked fine until a link radio died along the backbone, which would sever the connection on either side of this failure. Each link required a separate receiver/transmitter pair.
- One end of the network could not talk to the end of the network.
- For a period of time this was acceptable until the equipment and radios that made up the backbone just became too old and unreliable.
- Next was the controllers being old and failing.
- Then tower claiming access became restricted to professionals with the associated professional fees.

ad - 2

Alternatives To A UHF Backbone

- By the late 2000's the commercial world was already switching away from RF linking to dedicated copper lines or internet linking.
- Many newer formats for amateur radio are available on the market, D-Star, DMR, Fusion, etc. All require proprietary hardware/encoders. None will interoperate natively with another.
- All digital ham radios use the internet to link their repeaters.

Modernizing Analogue Repeaters With IP Linking

- MRS (now RAM) decided to modernize the analogue repeaters with IP linking until a fully suitable new standard is adopted.
- This strategy allows all members to keep using their current radios while the repeater system is modernized to use the new links.
- Rather than replace multi-port controllers at over \$2000/site, small Single Board Computers (SBC's) running Linux and Asterisk based software are used to replace the functionality of the existing controllers, and add IP linking capability.

Advantages Of IP Based Linking

- An IP based link has substantially less hardware required than a UHF link. An IP link eliminates the need for 2 UHF radios, a duplexer, heliax transmission line, antennas, and the professional tower climber to service it. (x2 for the other side of the link)
- IP linking and "The Internet" is the world's largest redundant backbone. Sites can have multiple redundant IP connections reducing/eliminating path failure.
- IP connections allow full remote configuration capabilities. Functions can be enabled or changed remotely.

Evolution Of Analogue IP Linking

- IRLP (Internet Radio Linking Project) was the first mainstream option for linking analogue radios over the internet. It is a closed system that does not interoperate.
- Echolink followed IRLP but was more open is allowing connections.
- AllStarLink was released in the late 2010's. Based on Asterisk, open-source VoIP software. All of the connection standards are open and can be utilized by other software developers.

Adoption of AllStarLink

- MRS (now RAM) decided to use AllStarLink to connect our repeaters over IP linking.
- Many sites now have HSMM (high-speed multi media) PTP wireless links providing IP connectivity between the repeater sites, maintained by the HSMM/VA4WAN group (now part of RAM).
- LES.net is a local ham and owns a VoIP and Internet provider in Winnipeg. LES.net provides internet uplink to the HSMM network, and hosts part the amateur IP Address space.
- Other sites have connections donated by local WISP's (Wireless ISPs)

The AllStar Network

- Repeater sites coordinate their connections through the AllStar registry system. A site owner has to prove their amateur radio status to register.
- Each site is assigned a unique node number that identifies it to the rest of the network.
- Nodes can connect directly to each other. When multiple nodes want to connect with each other, a hub and spoke topology is recommended.
- The number of nodes on a hub is limited only by IP bandwidth and the CPU resources of the hub servers.
- Hubs can be linked together creating an interconnected system of hubs and spokes.

RAM's AllStar Nodes

- RAM has 3 hub nodes running on a server hosted in a datacenter in Winnipeg.
- 478790 Manitoba Hub connects rural repeaters outside the city of Winnipeg.
- 478791 Winnipeg Hub connects repeaters within the city of Winnipeg.
- 478792 Remote Hub connects external users such as Echolink, hams with their own nodes and other AllStar hubs.
- Hubs are normally connected together, linking all the Winnipeg and rural repeaters together. Hubs can be disconnected to quickly separate the repeaters into their separate hub groups.

Node 478790

VE4MRS MBHUB: Winnipeg, Manitoba

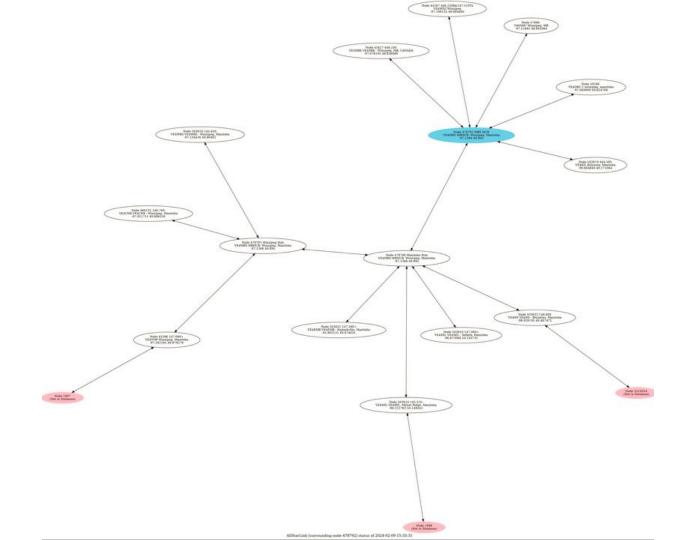
Click here for the Bubble Chart

Node	Callsign	Frequency	CTCSS	Location
478791	VE4MRS	Winnipeg Hub	CSQ	MBHUB: Winnipeg, Manitoba
478792	VE4MRS	MBX HUB	CSQ	MBHUB: Winnipeg, Manitoba
503610	VE4SEL	147.060+	127.3	VE4SEL - Selkirk, Manitoba
503614	VE4MIL	145.210-	127.3	VE4MIL -Milner Ridge, Manitoba
503611	VE4EMB	147.360+	127.3	VE4EMB - Hadashville, Manitoba
503613	VE4HS	146.880	127.3	VE4HS - Bruxelles, Manitoba
			Statistic	:S
	Actual Uptime			8d 12hr 55m 11s
		Keyups		2744
		Transmit Time		9hr 30m 41s
		Timeouts		0
	(Commands Executed		3

Node 478791

VE4MRS MBHUB: Winnipeg, Manitoba

Click here for the Bubble Chart


Callsign	Frequency	CTCSS	Location
VE4TMP	147.090+	127.3	Winnipeg, Manitoba
VE4MRS	Manitoba Hub	CSQ	MBHUB: Winnipeg, Manitoba
VE4CNR	146.760-	127.3	VE4CNR - Winnipeg, Manitoba
VE4WRS	145.450-	127.3	VE4WRS - Winnipeg, Manitoba
		Statistics	5
Actual Uptime			5d 19hr 56m 42s
Keyups Transmit Time Timeouts Commands Executed			1816
			6hr 22m 22s
			0
			5
	VE4TMP VE4MRS VE4CNR VE4WRS	VE4TMP 147.090+ VE4MRS Manitoba Hub VE4CNR 146.760- VE4WRS 145.450- VE4WRS 145.450- Keyups Transmit Time Timeouts	VE4TMP 147.090+ 127.3 VE4MRS Manitoba Hub CSQ VE4CNR 146.760- 127.3 VE4WRS 145.450- 127.3 Statistics Keyups Transmit Time Timeouts

Node 478792

VE4MRS MBHUB: Winnipeg, Manitoba

Click here for the Bubble Chart

Node	Callsign	Frequency	CTCSS	Location
45427	VE4DRK	446.100	127.3	VE4DRK - Winnipeg, MB, CANADA
45597	VE4WDZ	446.230Rx/147.510Tx	127.3	Winnipeg
478790	VE4MRS	Manitoba Hub	CSQ	MBHUB: Winnipeg, Manitoba
503619	VE4KIL	444.500	123.0	Killarney, Manitoba
57666	VA4SMC			Winnipeg, MB
59186	VE4DRC-2			winnipeg, manitoba
			Statistics	
		Actual Uptime		8d 12hr 56m 20s
		Keyups		2607
		Transmit Time		8hr 51m 9s
		Timeouts		0
		Commands Executed		0

Rural Repeaters

- RAM currently has AllStar repeaters in Selkirk, Milner Ridge, and Hadashville, and Gimli.
- RAM is working to add IP linking and internet connectivity at other rural sites by partnering with WISPs and other local organizations. Gimli still requires an IP link.
- Where an IP link is not currently feasible, some sites are using UHF links connected to an AllStar node as a stop gap measure.
- Falcon Lake is hotlinked to Milner's AllStar node with a UHF link.
- Starbuck (VE4MAN) has an active UHF link to VE4TMP allstar node, and Morris (VE4CDN) is being worked on to use UHF links to connect to the VE4TMP node.

Rural Repeaters

- RAM has invited other Manitoba repeater owners to connect their repeaters to the MB Hub.
- Brandon ARC has connected their Brandon (VE4CTY) and Buxelles (VE4HS) repeaters to the hub, with RAM providing the assistance.
- Dauphin ARC is working on connecting their downtown repeater to AllStar.
- RAM is working with Prairie Mobile to connect their Mountain Road repeater (VE4RAG) to AllStar.
- RAM is working with Bruce VE4KQ to assist with the installation of Allstar systems in Killarney VE4KIL and Austin VE4ARM

Winnipeg Repeaters

- RAM currently has 3 AllStar repeaters in Winnipeg.
- VE4CNR West Transcona
- VE4WRS South Osborne
- VE4TMP (soon VA4STC) Sturgeon Creek
- VE4WPG/VJ on the Richardson building cannot be reliably connected to the AllStar network. Building operators are not open to any additional roof-top equipment necessary to provide a reliable IP link. RAM has no active lease agreement and could lose this site at any time.
- New sites for WPG and VJ are in progress to add UHF/VHF repeaters to the AllStar system.

AllStar Controls

- AllStar uses DTMF command codes similar to previous hardware controllers.
- DTMF codes are customizable in software. Custom commands can be made to run any software that you want to program.
- Macros can run multiple DTMF commands at once to simplify repetitive operations.

Basic Commands

- *1<node_num> Disconnect the given node number from the node you are transmitting to.
- *3<node_num> Connect the node you are transmitting on to the given node number.
- *70 Report the current connections of the node you are transmitting to.
- *813<node_num> Persistently connect to a given node number.
- *4<node_num> Start remote command session with a remote node.

RAM Macro Codes

- RAM is working on programming macros into the repeaters to return the hubs to a standard state.
- Current macros being planned
 - *560 Disconnect the Winnipeg and Manitoba hubs but leave all associated repeaters connected to their respective hubs
 - *561 Connect the Winnipeg and Manitoba hubs together and all repeaters that are normally connected to the hub.

Additional AllStar Information

- <u>https://allstarlink.org</u> Homepage for the AllStarLink Project
- <u>https://allstarlink.org/nodelist</u> See a full list of nodes registered with AllStar
- <u>https://stats.allstarlink.org/stats/478790</u> MB Hub Status
- <u>https://stats.allstarlink.org/stats/478791</u> WPG Hub Status
- <u>https://stats.allstarlink.org/stats/478792</u> Remote Hub Status

Questions?

Radio Amateurs du Manitoba