Using Large Hard Drives in Linux

Presented by Kevin McGregor Manitoba UNIX User Group March 12, 2013

The Problem

 Because the Master Boot Record (MBR) data structures use 32-bit pointers for LBA (Logical Block Addressing) and sectors are assumed to be 512 bytes long, maximum disk size is ~2.2 TB (2 TiB)

So what? I Won't Use Partitions

- Mark whole drive as an LVM physical volume e.g. pvcreate /dev/sdb and make logical volumes out of that
- * Works fine!

That Usually Works Fine...

- * But other GPT-unaware OSs may still see it (e.g. on a SAN)
- But the disk looks empty (with standard tools) even when it isn't
- * But it's hard to tell what the disk contains
- * But it's hard to tell what the disk is for
- * But mistakes happen

So Label Your Disk

* With MBR?

* 2³² sector limit

- * Single Point Of Failure (SPOF) one copy
- Maximum four primary partitions
- Extended/Logical partitions are lame and fragile (Single-linked list!)
- Cylinders? Heads? Sectors per track?
 Irrelevant cruft now

GUID Partition Table (GPT)

- * Up to 2⁶⁴ sectors (8 Giga-Terabytes [ZiB])
- * Two copies; start and end of disk
- * Variable number of partitions (default 128)
- LBA 0 is a "Protective MBR"; a dummy partition table with one partition of type 0xEE covering whole disk (up to a maximum of 2 TiB)

- * LBA 1 is GPT header
- Defines
 - Maximum number of partitions
 - Number and size of table entries
 - * Disk UUID
 - Location of GPT, backup GPT
 - * Checksums
- * GPT entries include
 - * 64-bit start LBA and end LBA (not length)
 - * 128-bit UUID for partition type
 - * Name (up to 36 UTF-16LE "code units")

GUID Partition Types

- * Linux/Windows data EBD0A0A2-B9E5-4433-87C0-68B6B72699C7
- * Linux swap 0657FD6D-A4AB-43C4-84E5-0933C84B4F4F
- * Linux LVM E6D6D379-F507-44C2-A23C-238F2A3DF928
- * Linux RAID A19D880F-05FC-4D3B-A006-743F0F84911E
- * Good thing we don't have to memorize them!

- * Don't use fdisk; it's for MBR-only disks
- * fdisk will warn you if it detects a GPT-labeled disk
- * Use parted:
- * mklabel gpt # create the disklabel
- * p # list the GPT partitions
- * q # exit parted, writing changes

Basic parted

* Create a basic data partition

- * mkpart <name> <start> <end>
- * e.g. mkpart home 1G 2G
- Create a swap partition
 - * mkpart <name> linux-swap <start> <end>
 - * e.g. mkpart swap linux-swap 2G 3G

Basic parted (continued)

Create a LVM partition

- * Make a normal data partition
- Mark as LVM
 - * parted <drive-device> set <partition#> lvm on
 - * e.g. parted /dev/sda set 2 lvm on
 - * NOT parted /dev/sda2 lvm on
- * Marks /dev/sda2 with "Linux LVM" GUID

Basic parted (continued)

- * Create a software RAID partition
 - * Make a normal data partition
 - * Mark as RAID
 - * parted /dev/sda set 3 raid on
 - * Marks /dev/sda3 with "Linux RAID" GUID

Booting from GPT

- All current Linux distros can use GPT-labeled secondary disks
- To boot from GPT, your system must support the uEFI boot process
- * The "Protective MBR" no longer contains bootloader
- First partition on boot disk is EFI System Partition (ESP) a FAT filesystem, usually mounted on /boot/efi
- * See also efibootmgr

Hybrid MBR/GPT

- * You can do this, technically... but it's a bad idea
- * Not generally supported
- * Prone to error

A Quick Sample

```
$ parted /dev/sdb
GNU Parted 2.3
Using /dev/sdb
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) p
Model: ATA WDC WD30EFRX-68A (scsi)
Disk /dev/sdb: 3001GB
Sector size (logical/physical): 512B/4096B
Partition Table: gpt
Number Start End Size File system Name Flags
                                            Linux RAID raid
       1049kB 3001GB 3001GB
 1
(parted) align-check opt 1
1 aligned
(parted) unit MiB
(parted) p
Model: ATA WDC WD30EFRX-68A (scsi)
Disk /dev/sdb: 2861588MiB
Sector size (logical/physical): 512B/4096B
Partition Table: gpt
```

NumberStartEndSizeFile systemNameFlags11.00MiB2861588MiB2861587MiBLinux RAIDraid

References

- * This presentation was largely copied from https://www.redhat.com/summit/2011/presentations/summit/ta ste_of_training/wednesday/Bonneville_Getting_Beyond_2_Tera bytes_Using_GPT_with_Storage_Devices.pdf
- * See also

https://en.wikipedia.org/wiki/Master_boot_record https://en.wikipedia.org/wiki/GUID_Partition_Table

* And many other sources

Questions

