
Who, What, When,
Where, Why, How?

PostgreSQL

1

Who's involved with PostgreSQL?

QUIS?

• Core team: https://www.postgresql.org/community/contributors/

• Large Users: https://www.postgresql.org/about/users/

• Case Studies: https://www.postgresql.org/about/casestudies/

• Open Source Edition: https://www.postgresql.org/

• Commercial/Supported Editions
• EnterpriseDB Postgres (and EDB PgSQL Advanced Server)
• 2ndQPostgres
• Crunchy PostgreSQL
• Postgres by BigSQL
• Postgres PRO Standard & Enterprise
• And more: https://www.postgresql.org/download/products/8-postgresql-

derived-servers/

2

https://www.postgresql.org/about/users/
https://www.postgresql.org/about/casestudies/
https://www.postgresql.org/
https://www.postgresql.org/download/products/8-postgresql-derived-servers/
https://www.postgresql.org/download/products/8-postgresql-derived-servers/

What is this stuf f?

QUID?

• PostgreSQL started as the Postgres, the successor to Ingres (it's the
"Post"-Ingres database, ha ha ha)

• Originally not SQL, then added POSTSQL, then finally replaced with
new ANSI-SQL engine

• Renamed to PostgreSQL at v6.0 (Commonly abbreviated "PgSQL")

• Object-relational, hybrid operation is a built-in feature

• MVCC, PIT recovery, async replication, nested transactions, hot
backups, WAL, i18n charsets, l10n collations, full UNICODE, GIS, FTS.

• Multi-petabyte scalability (using clusters, otherwise multi-terabyte)

3

When should you use or switch to PgSQL?

QUANDO?

• MySQL database workload is no longer embarrassingly read-only or
write-only

• Database engine needs to fit into less memory

• Existing database query optimizer isn't sophisticated enough to handle
increasingly-complex reporting

• GIS functions require expensive add-on

• User licensing requirements require expensive upgrade

• Can't distribute GPL source code with your closed-source product

• New projects: why would you use anything else?

4

Where to use PgSQL?

UBI?

• Embedded systems - PgSQL uses the OS buffer cache instead of reserving its
own memory, and can provide nearly-deterministic performance.

• Application-backing database - PgSQL requires zero maintenance out of the
box. Nothing grows without bound unexpectedly and nondeterministically.
(Lookin' at you, IBDATA1.LOG...) Defaults are sensible for a wide range of
applications. Only local UNIX socket connections are enabled by default.

• Large databases - the query optimizer is extremely intelligent.

• Hybrid systems - PgSQL is natively both an object database and an RDBMS.

• GIS systems - PostGIS rivals or betters all its commercial competitors.

• ORACLE replacement - EnterpriseDB Advanced Server is a compile-time
replacement for ORACLE RDBMS.

5

Why should I use PgSQL?

CUR?

• You need an RDBMS. Period. That's good enough, really.

• You need an open-source RDBMS

• You need a non-GPL RDBMS

• You need a mostly-<whatever>-compatible RDBMS

• You need a ANSI-SQL:2008 conforming RDBMS

• You need a highly-extensible RDBMS

• You need a highly-scalable RDBMS

6

 OK, now what?

QUEM AD MODUM?

• PostgreSQL is available in the package repository of - as far as I know - every
Linux and *BSD distribution.
• [apt-get|yum|dnf] install postgresql, or some variant on that, will install a

reasonably-recent version of PostgreSQL
• PostgreSQL project maintains dpkg and yum repositories for every supported

version.

• Download either binary installers or tarballs/zipfiles for macOS, Windows, and
other UNIXes.

• Consider a commercially-supported version if you expect to move into to
production with it.

• If migrating from another database, just use a commercial distribution with
support for source-DB-specific migration tools.

7

