
1

MUUG Lines

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Manitoba UNIXUser Group

INSIDE THIS ISSUE

THIS MONTH’S MEETING

Volume 4, Number 8 June 1992 $2.50

Meeting Location:
Our June meeting is scheduled for Tuesday, June 2,
at 6:00 PM (a week and 1.5 hour earlier than usual).
This meeting will be the traditional TUUG June
BBQ. This year, Roland Schneider is hosting it at
his home in Selkirk. A map is included in this
month’s newsletter.

Meeting Agenda:
Eat, drink, and be merry – but no computer talk!

MUUG Goes Online!
By Roland Schneider

Newsletter of the Manitoba UNIX User Group

For any of our members who don’t know about the MUUG
Online project yet, a little background is in order. The
University of Manitoba Computer Centre has given MUUG
access to a Sun386i workstation which they no longer
require. The machine is located at the university, and is
connected to the university’s LAN and to the Internet. Dialup
access to the machine, named “mona” (for “MUUG Online
Network Access”) is through the modem pool on the
university’s UMnet (Develnet). MUUG is responsible for the
operation and maintenance of the machine.

The purpose of the MUUG Online project is to give our
members access to Internet services like e-mail, ftp, and
Usenet news. Any MUUG member can apply for an account
on MONA to get interactive access to the Internet. We will
also be providing dialup UUCP links to members who want
to receive e-mail and news on their own systems instead
having to manually call MONA.

Services
E-mail

Electronic mail is a very effective means of communication.
It allows anyone on a networked computer, from PCs to
mainframes, to send, receive, archive, forward, and distribute
messages, or computer data of any kind. Many organizations
have been using e-mail internally for some years. With
MUUG Online, you will be able to either log in to MONA
interactively to send mail anywhere in the world, or establish
a UUCP link and integrate your present office system with
the world-wide access offered by the Internet.

Everyone with an account on MONA has an e-mail
address starting with their userid, like jsmith@muug.mb.ca ,
as well as one containing their full name, like
john.smith@muug.mb.ca . Those with a UUCP connection
will also have an address containing the name of their own
computer, like john@JJConsult.muug.mb.ca . J&J Consult-
ing may have users other than John, so there may also be an
address like joe@JJConsult.muug.mb.ca , even though Joe
doesn’t have an interactive MONA account.

Usenet News
Usenet news is like a huge, world-wide, non-interactive
bulletin board. Anyone with access can read and post items,
and read everything everyone else has posted. The news is
divided into newsgroups, each with a different topic. Topics
range from politics, to humour, to computers (lots of
computers...), to specialized scientific research areas.

MUUG Online intends to carry most of the newsgroups
our members are interested in, taking into account disk space
and communications limitations. We have also set up some
local newsgroups to allow the same sort of interchange
among MUUG members. News will be available interac-
tively on MONA and via UUCP.

(Continued on page 13)

President’s Corner
Interim Financial Statements
Hands-on: Using the XView

Open Look Toolkit;
Shared Memory for Inter-
Process Communication, pt. 2

The Fortune File
May 12th Meeting Minutes
Map to June 2nd BBQ

2

The Manitoba UNIX User Group meets at
7:30 PM the second Tuesday of every month,
except July and August. The newsletter is
mailed to all paid up members one week prior
to the meeting. Membership dues are $20
annually and are due at the October meeting.
Membership dues are accepted by mail and
dues for new members will be pro-rated
accordingly.

Manitoba UNIX User Group
P.O. Box 130

Saint-Boniface, Manitoba
R2H 3B4

Internet E-mail:
editor@muug.mb.ca

This newsletter is opyrighted by the Manitoba
UNIX User Group. Articles may be reprinted
without permission, for non-profit use, as long as
the article is reprinted in its entirety and both the
original author and the Manitoba UNIX User
Group are given credit.

The Manitoba UNIX User Group, the editor, and
contributors of this newsletter do not assume any
liability for any damages that may occur as a result
of information published in this newsletter.

President: Susan Zuk (W) 788-7312
Past President: Eric Carsted 1-883-2570
Vice-President: Richard Kwiatkowski 589-4857
Treasurer: Rick Horocholyn (W) 474-4533
Secretary: Roland Schneider 1-482-5173
Membership Sec.: Allan Moulding 269-8054
Mailing List: Gilles Detillieux 489-7016
Meeting Coordinator: Kathy Norman (W) 474-8311
Newsletter editor: Gilbert Detillieux 489-7016
Information: Susan Zuk (W) 788-7312

(FAX) 788-7450
(or) Gilbert Detillieux (H) 489-7016

(FAX) 269-9178

Copyright Policy and DisclaimerThe 1991-1992 Executive

Our Address Group Information

Have a great Summer!

3

PRESIDENT’S CORNER

As the Summer Approaches
By Susan Zuk, President

Much has happened in the last month in terms of group
activity. The name Manitoba UNIX User Group is officially
ours, we have officially become an affiliate of UniForum
Canada, MUUG was visited by the President of UniForum
Canada, Tom Vassos, we participated in the Muddy Waters
Computer Society Computer Show, and the process of
setting up internet access for our members is moving ahead
quickly. So you can see this is a very exciting and busy time
for the group.

The exposure we received at the Computer Show, on
April 26th at the Convention Centre was excellent. Just
under 4,000 people passed through the doors and we had
over 400 stop and talk to us about our group and our
activities. This was MUUG’s first publicity event and was
very worthwhile. Thanks to Gilbert Detillieux, Gilles
Detillieux, Allan Moulding, Roland Schneider, and Rick
Horocholyn for spending one of their precious Sundays
helping to promote the group. Your dedication is wonderful.

The affiliate form was completed and sent back to the
UniForum office with Tom Vassos this previous week. The
first event where our group is represented is at UniForum’s
Open Systems Show held May 27-29. UniForum is holding
one of its semi-annual meetings on Friday. This is a full day
session called a National Council Meeting. The National
Council is comprised of the President’s of the local affiliates.
I will report on the day’s events in the next newsletter.

Our meeting with Tom Vassos, the President of UniFo-
rum Canada, was very enlightening. Tom spoke to the
executive about various programs being pursued by the

National Committee. UniForum Canada has changed its by-
line to UniForum Canada, the Canadian Association of Open
Systems Professionals. The feeling is that this will allow the
organization to offer a fuller range of information to its
members since UNIX is not the only thing which makes an
environment open. Such items as standards, other operating
systems and hardware can also be addressed.

Tom informed us that a Western Road Show is being
planned for Edmonton, Calgary and Vancouver in the fall
timeframe. This is something we could consider becoming
involved with in the upcoming years. UniForum Canada is
also working on developing a package price for UNIX
publications for its members. They are busy talking to the
publishers of the various publications. Another program is to
setup a Canadian User Alliance, so that Canadian companies
and users may be able to have a voice and some involve-
ment in what is going on in the Opens Systems environment.
An alliance has already been organized in the U.S. As well,
industry sectors such as the Petroleum companies have
organized their own groups to lobby industry to comply to
their specifications. There were more items which were
discussed but I will wait to receive more information and
report to you in the next newsletter.

Just a reminder about our Annual Barbecue on June
9th. Come down and join us. You will find more details later
in the newsletter. If you are unable to attend the Barbecue,
I would like to wish you a wonderful summer and look
forward to seeing you again in the fall. ✒

Profit and Loss Statement
For the 7 months ending 1992/05/31

Revenues
Membership Fees 1526.00
Other Revenue (Fall Symposium) 8000.00
Total Revenues 9526.00

Expenses
Newsletter (paper & postage) 492.15
Advertising 63.00
Entertainment (Symposium wind-up) 59.55
Speaker Fees & Expenses 82.08
Bank Charges 4.83
Postal Box Rental 80.25
Miscellaneous Expenses 130.13
Total Expenses 911.99

Net Income 8614.01

Rick Horocholyn works for Manitoba Hydro. He’s been a
member of the group for several years, and has been the
group’s treasurer since October, 1991.

Balance Sheet
As of 1992/05/31

Assets
Cash 80.00
Chequing 1454.28
Investments 8000.00
Accounts Receivable 30.00
Equipment 168.68
Other Assets 54.72

Total Assets 9787.68

Liabilities
Accounts Payable 662.34

Total Liabilities 662.34

Equity
Net income to date 8614.01
Retained Earnings (previous year) 511.33
Total Equity 9125.34

Total Liabilities and Equity 9787.68

FINANCE

Manitoba UNIX User Group
Interim Financial Statements

By Rick Horocholyn, Treasurer

4

HANDS-ON

Using the XView OPEN LOOK Toolkit
An easy way to build a modern Graphical User Interface

By Roland Schneider

Most modern applications demand easy-to-use and easy-to-
learn graphical user interfaces. (GUI’s) Easy-to-use does not
imply easy-to-program, of course. Toolkits, like Sun’s
XView, make the task more manageable, and encourage
adherence to GUI standards, which in turn makes the
application easier to learn because many aspects of the
interface behavior will already be familiar to the user.

It is important to get a few terms straight before diving
into the technical details. The underlying graphics standard is
“X Windows”, or “X11” or just “X”. X, through the func-
tions in the library Xlib, lets you create windows, draw lines
and polygons, and monitor keyboard and mouse activity on
local or networked X display servers. (display devices like
workstations or X terminals) A GUI standard, like OPEN
LOOK or Motif, specifies how the user interacts with a
program. The functions of the mouse buttons, the appearance
and operation of scrollbars, control buttons, menus, and pop-
up windows are all part of the standard. A toolkit, like
XView, is a set of functions which help in implementing a
GUI conforming to a standard, in this case OPEN LOOK.
The term “application program interface” or “API”, refers to
this set of functions and the arguments you pass to them.

The Details
There are very few functions to call in XView, but most take
a NULL-terminated, variable-length list of arguments. The
functions are easy to remember, the arguments are not. The
nice thing is that most parameters have default values, so you
can usually get away with only a few arguments. Functions
which create something return a handle to the created object,
which can later be used to control and query the object.

The first step is to initialize XView and create a base
window into which everything else will go.

xv_init(NULL);
base_frame = (Frame) xv_create(NULL,

FRAME,
FRAME_LABEL, "My Window",
NULL);

The arguments to xv_create() specify that the parent is
the root window (the background), that we want to create a
frame, and that its label should be “My Window.” We could
also have specified an icon to use when the window is
closed, an initial size, whether or not the frame can be
resized with the mouse, footers in addition to the header
label, etc. We didn’t, so XView assigns default values.

Now we have to create a panel in the frame onto which
we’ll put our buttons and so on.

control_panel = (Panel) xv_create(base_frame,
PANEL,
PANEL_LAYOUT, PANEL_VERTICAL,
NULL);

The parent of the panel is the base frame and the layout
of the items on the panel will be vertical. Now let’s put a
simple button on the panel.

xv_create(control_panel,
PANEL_BUTTON,
PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, proc_do_quit,
NULL);

The parent is the control panel we created before, the
thing being created is a button, the label is “Quit”, and the
function to call when the button is pushed is specified by the
function pointer proc_do_quit .

Inverted Program Structure
“Wait a minute, that isn’t how I handle user input. I read a
command, parse it, and then act on it — what's this stuff
about XView calling my function?” Well, that’s how XView
wants you to do it. It actually works quite well, since it
encourages you to design your program so that it reacts to
user input, or is “event driven.” Unfortunately, converting an
existing program to this structure can be very painful,
depending on how it’s currently written. There are ways to
use XView with a traditional command-reading loop, but it’s
difficult, and many things don’t happen as automatically as
they do when you use the default structure.

Let’s finish our program. We’ll add a slider, and a non-
exclusive choice item.

bcontrol = (Panel_item)xv_create(control_panel,
PANEL_SLIDER,
PANEL_LABEL_STRING, "Bright:",
PANEL_MIN_VALUE, 0,
PANEL_MAX_VALUE, 100,
PANEL_SLIDER_WIDTH, 50,
PANEL_TICKS, 5, PANEL_SHOW_VALUE, FALSE,
PANEL_VALUE, 70,
PANEL_NOTIFY_PROC, proc_set_brightness,
NULL);

xv_create(control_panel, PANEL_TOGGLE,
PANEL_LABEL_STRING, "What:",
PANEL_CHOICE_STRINGS,

"Inside",
"Outside",
NULL,

PANEL_VALUE, 1,
PANEL_NOTIFY_PROC, proc_set_what,
NULL);

Notice that the label is always set by
PANEL_LABEL_STRING, and the notification function by
PANEL_NOTIFY_PROC, no matter what kind of panel item is
being created. The slider has lots of parameters because the

5

HANDS-ON

defaults didn’t suit our purpose. PANEL_CHOICE_STRINGS is
followed by its own NULL-terminated list of labels for the
choices. You can specify pictures instead of text for labels by
using PANEL_LABEL_IMAGE instead of PANEL_LABEL_STRING.
Similarly, PANEL_CHOICE_STRINGS can be replaced by
PANEL_CHOICE_IMAGES. The PANEL_VALUE parameter speci-
fies an initial value for the choice item.

The sizes of the frame and the panel have never been
specified. We really just want them big enough to contain
whatever is inside, so we call

window_fit(control_panel);/* buttons, etc. */
window_fit(base_frame); /* contains panel */

Drawing Graphics
Graphics are drawn into a canvas, so we create one and get
the corresponding X window for drawing into using Xlib
calls, which won’t be discussed here.

my_canvas = (Canvas) xv_create(base_frame,
CANVAS,
XV_WIDTH, 200,
XV_HEIGHT, 100,
NULL);

my_xwin=xv_get(canvas_paint_window(my_canvas),
XV_XID);

It’s also possible to set an input handling function for
the canvas which will be called with the mouse coordinates,
mouse buttons, keyboard keys, etc. whenever an event
happens while the cursor is over the canvas.

Finishing It Off
We added the canvas to the frame, so the frame has to be
resized using

window_fit(base_frame); /* panel & canvas */
This will also stretch the panel so that it fills the entire width
of the frame, which is now wider because of the canvas.

Now, finally, we give control to XView so that it can
handle the input events from the mouse and keyboard,
provide feedback like inverting the image of a panel button
when the left mouse button is pressed, and call our notify
procedure when the left mouse button is released.

window_main_loop(base_frame);
It's possible to avoid most of this programming by using

software which lets you use the mouse to set panel item
properties and then place them. Sun has such a product, but
I've never used it, so I can't say much about it. Although this
user-interface code tends to be long-winded, using it
amounts to more cutting and pasting than anything else, and
the compiled code isn't very large.

Notify Procedures
The processing in the program is performed by the notify
procedures. Their functions can range from very simple, like
the one for the quit button, to complicated and time-consum-
ing. The parameters they are called with depend on the type
of panel item being processed. Here are procedures for the
panel items we created:

int do_inside = 1;
int do_outside = 0;
void proc_do_quit(button, event)

Panel_item button;
Event *event;

{
printf("Quit button was pressed\n");
exit(0);

}

void proc_set_brightness(item, value, event)
Panel_item item;
int value;
Event *event;

{
printf("Slider set to %d\n", value);
/* do whatever control is supposed to do */

}

void proc_set_what(item, value, event)
Panel_item item;
int value;
Event *event;

{ /* each bit reps one of the choices */
if (value & 1) do_inside = 1;

else do_inside = 0;
if (value & 2) do_outside = 1;

else do_outside = 0;
if (value == 0) /* nothing set */

xv_set(bcontrol,
PANEL_INACTIVE, TRUE,
NULL);

else xv_set(bcontrol,
PANEL_INACTIVE, FALSE,
NULL);

}

6

HANDS-ON

Notify procedures are always called with a handle to the
panel item which generated the event. In this example, the
handle was never needed because each notify procedure
handles only a single panel item, something which is
impractical in a large program. Notice that proc_set_what()
uses xv_set() to deactivate and gray-out the brightness
control if nothing is selected. In fact, xv_set() can change
most of the parameters which can be specified to
xv_create() , including the item labels, choice strings,
values, etc.

Other Panel Items
This is only a small sample of the panel items available.
There are may kinds of choice items, including abbreviated
choices which automatically generate a pull-down menu.
There are also text items for typing into, buttons with menus
attached, message and gauge items for showing display-only
information, and scrolling lists.

Other Objects
There are other kinds of XView objects too. Menus can be
created and attached to panel buttons so that they will be
shown when the right mouse button is pressed over the
button. Alternatively, you can display a menu whenever you
want, for example from a canvas input handler in response to
a right mouse button press over the canvas.

One of the unique features of an OPEN LOOK menu is
that it can be pinned by the user, making it into a small
window which doesn’t go away when its functions are
executed. This has implications for the design of the user
interface, because it allows obscure functions which may be
heavily used from time to time to be buried deep in the menu
structure. The user only has to “walk” through the menus
once, and pin the one containing the required commands.

There are also text subwindows, which allow simple text
editing, tty subwindows for running programs which want
terminal I/O, scrollbars which allow the user to pan and split
canvases and notices for displaying warnings and error
messages. XView also provides access to selection services
for cutting and pasting between applications as well as
control of fonts, colormaps, cursors, and most other aspects
of a modern interface.

Special Features
A serious drawback of the inverted XView programming
style is that you can end up with a large number of global
variables, like the handle bcontrol , and the status variables
do_inside and do_outside , and a lot of very simple notify
procedures. XView contains two useful, although somewhat
subtle, features which help avoid this.

The first is a pair of functions which can be used to
“walk through” all the items on a panel, avoiding the need to
use a global variable for each panel item if the requirement is
simply to set or read the current values. No notify procedure
is needed in this case, because the values can be read with
the xv_get() function.

The second feature is the ability to attach arbitrary data,
usually in the form or pointers or integers, to any XView
object, including panel and menu items. The call

xv_set(item,
XV_KEY_DATA, 123, "This is my item",
NULL);

attaches the key 123 and a pointer to the string “This is my
item” to the item. Later, the call

txt = (char *)xv_get(item, XV_KEY_DATA, 123);
will retrieve the text. Any number of keyed data items can be
attached to each XView object. This can be a useful way to
communicate information from one part of a program to
another and allows you to write “generic” notify procedures
which can handle events from a variety of related panel
items, because the items can be labeled with character string
identifiers or handles to the objects they are supposed to
control.

Compatibility
Theoretically, XView programs will work with any X server,
but special fonts, which are now included in most systems,
are required for the buttons, menus, etc. to look right. Also,
some features may not be available if you don’t use an
OPEN LOOK compliant window manager. The window
manager is the program which allows you to open, close,
resize, and move windows around on the screen, and also
provides the “pinning” function described earlier.

How to Get It
If you have a Sun workstation running OpenWindows, you
already have XView. If you don’t, source is available in both
the X11R4 and X11R5 distributions from MIT. I believe the
R4 version of XView had only been ported to Sun and DEC
3100 workstations; I don’t know about the R5 version.
X11R5 is available from MIT for the cost of distribution, and
will be available for free to MUUG members when we put
together our public domain software tape.

To Read Further
The standard books on X windows are published by O’Reilly
and Associates, Sebastopol CA. Of particular interest are:

Volumes 1 and 2:
Xlib Programming Manual
Xlib Reference Manual
ISBN 0-937175-13-7 (set of both books)

Volume 7:
XView Programming Manual
ISBN 0-937175-52-8

Prices are about $37 per book. All three are included in
Sun’s on-line AnswerBook documentation. ✒

Roland Schneider is a Ph.D. student in Electrical Engineer-
ing at the University of Manitoba. He is also the MUUG
secretary since October, 1991.

7

HANDS-ON

Using Shared Memory for Inter-Process Communication
Part 2 of 3

By Peter Graham
Last time we talked about the potential uses for shared
memory both in uniprocessor and multiprocessor Unix
machines. (Admittedly with a leaning towards multiproces-
sors. :-) This article discusses the “overhead” associated with
shared memory applications; namely “synchronization.”

Whenever multiple concurrent (or pseudo-concurrent)
processes share data there is the possibility of contention.
This simply means that more than one process may be
attempting to access the data at the same time. If both of
these processes read the data, then everything is alright, but
if one or more attempt to write it then problems occur.
Synchronization is the solution to these contention problems.
By coding semaphore calls (or perhaps using other synchro-
nization primitives) the programmer “synchronizes” the
access of the processes to the shared data. Effectively
enforcing an access order on them.

Why do we really need synchronization? This is most
easily answered with a simple example of what can happen if
you do not provide synchronization. Consider a system of
automatic teller machines (ATMs). Suppose that a certain
Computer Science PhD student and his wife both have ATM
cards which allow access to their account. If these malicious
individuals both attempt to withdraw $500 from their
account at the same time (presumably using two side-by-side
machines) then the bank’s computer might receive the
following two transactions simultaneously.
Transaction 1 Transaction 2
read balance from acct read balance from acct
if balance < $500 then if balance < $500 then

reject transaction reject transaction
else else

balance=balance-500 balance=balance-500
endif endif
write balance to acct write balance to acct
dispense $500 dispense $500

If we further suppose that these two identical transac-
tions are being performed on a multiprocessor and are
executed concurrently then what will happen? If the original
balance was $501 (graduate students are poor :^>) then both
transactions running on different processors will read the
balance and find it to be $501. Since this is greater than
$500, both will dispense $500 after subtracting 500 from the
balance and writing the new ($1) balance back. The ending
balance is correct, but $1000 has been dispensed. This is
because the transactions (i.e. processes) were not synchro-
nized. Clearly, a bank manager would not be pleased with
this occurrence.

Now, before all you married folk out there go rushing
out to the ATMs at your local mall, I can pretty much
guarantee that the banks have closed this little loophole. This
is the most common form of synchronization problem there
is and it is well understood by pretty much anyone who has

taken an Operating Systems or Database class.
The important thing to understand is why the problem

occurs. The code reads, modifies, and then writes the account
balance. The problem arises because once one transaction
has read the value, the other should not be able to read it
until the first has finished writing the new balance. If the
second transaction can read the same balance, they will both
come to the conclusion that there is $500 available in the
account and will both dispense $500. Such a piece of code is
called a critical section and access to critical sections (CSs)
must be synchronized. Stated in more general terms, opera-
tions on shared data must be done indivisably (one at a time
to completion). By synchronizing the transactions we force
one to go before the other and say that they are executed
mutually exclusively.

Now that we have that out of the way, and assuming you
still want to use shared memory due to its high-efficiency,
we are left with the task of learning to do synchronization
using Unix. Unix provides a very flexible set of semaphore
primitives for mutual exclusion (mutex). While semaphores
are considered to be a low-level mutex facility, they are very
general and are programming language independent. This
was likely why they were chosen for use in Unix.

A semaphore is a special type of variable which is used
for synchronization. Two operations are normally defined on
semaphores; “wait” and “signal.” The semaphore maintains
an integer value which is typically either zero or one. The
“wait” operation stops a given process from executing until
the value of the semaphore is non-zero. It then decrements
the value and returns. If a semaphore’s value is zero, the
“signal” operation restarts one of the processes waiting on
that semaphore. Otherwise, “signal” just increments the
value of the semaphore. The key here is that these are
operations done in the kernel which makes them indivisible.
That is, the kernel ensures that only one process can access a
semaphore’s value at a time. If this were not the case then we
would have critical sections for accessing and updating the
semaphore’s value.

We can use these simple (“binary”) semaphores to solve
our previous synchronization problem. If we refer to the
entire transaction (our CS) as ‘Ti’ then we simply code the
following:

Transaction 1 Transaction 2
wait(mutex_sema) wait(mutex_sema)
Ti Ti
signal(mutex_sema) signal(mutex_sema)

Assuming that the semaphore (‘mutex_sema’) is initialized
to one then this will force the two transactions to be synchro-
nized. Even if both transactions execute their ‘wait’ opera-
tions simultaneously, the kernel will ensure that only one is
performed at a time. Thus, one transaction will get to enter
its critical section while the other will be stopped. When the

8

transaction which first enters the CS issues its ‘signal’ the
other process will be awakened and only then will it be
allowed to enter its CS.

It is also possible to have “counting” semaphores which
allow the semaphore to take on other positive values besides
one and zero. The descriptions of wait and signal given
above still hold in this case. We will postpone discussing
their use for the time being but merely acknowledge their
existence and assume their usefullness.

Unix extends the notion of the basic binary semaphore
described previously by allowing counting semaphores and
by also allowing semaphores to be grouped into “semaphore
sets.” Unix’s semaphore operations operate on semaphore
sets not individual semaphores (of course a set may consist
of a single semaphore). The advantage of having semaphore
sets is that by grouping logically related semaphores, we can
perform operations on all members of the set at once while
still being ensured of mutual exclusion.

The Unix semaphore calls consist of ‘semget’ to create a
semaphore set, ‘semop’ to perform operations on a sema-
phore set, and ‘semctl’ to perform a variety of functions
including destroying unused semaphores. We will discuss
each in turn briefly as we did in part one of this article
leaving out the details of the more esoteric features each
provides.

If we require a single semaphore, the first thing we must
do is create it. This can be done with the call:

semid=semget(key, 1, IPC_CREAT);
A call to ‘semget’, like a call to ‘shmget’ requires a unique
key (formed using ‘ftok’) to identify the semaphore set. The
second argument specifies the number of semaphores
required (in the set) and the final argument specifies that we
want to create this semaphore set if it does not already exist.
As you might expect, ‘semget’ returns a semaphore identifier
for use with the ‘semop’ operations or -1 if an error occurs.

A ‘semop’ call has the following form:
semop(int semid, struct sembuf **opsptr,

unsigned int numops);
The first argument identifies the semaphore set being

operated on and the second argument specifies a pointer to
an array of semaphore operations. The third argument
specifies the size of that array (i.e. the number of operations
to be done.) The type ‘struct sembuf’ is defined as:

struct sembuf {
ushort sem_num; /* sem. # in the set */
short sem_op; /* op. to be performed */
short sem_flg; /* operation flags */

};
The ‘sem_op’ member specifies the operation to be done on
the given semaphore in the set. It is used as follows:
1. If sem_op is positive, its value is added to the sema-

phore.
2. If sem_op is zero, the caller is made to wait until the

semaphore’s value becomes zero.
3. If sem_op is negative, the caller is made to wait until the

semaphore’s value becomes greater than or equal to the
absolute value of sem_op.

HANDS-ON
There are a number of different possibilities for the

‘sem-flg’ member. The most useful of these permit non-
blocking waits, and a roll-back facility which will correct for
any outstanding semaphore operations when a process
terminates abnormally. The ‘semop’ call returns either 0 or -
1 indicating success or failure.

The ‘semctl’ call can be used for many purposes
including explicit setting or reading of a semaphore’s value.
We will only consider its use in removing a semaphore
which is no longer required. This can be done using the
following call assuming our single semaphore example:

semctl(semid,0,IPC_RMID,0);
See the online man pages for more details about these
primitive semaphore operations.

Now that we have the necessary primitives, let’s look at
some code which uses both shared memory and semaphores.
We will implement a much simplified version of a bank’s
ATM system. We create a banker (server) process which
initializes a set of accounts in shared memory which are then
available to a collection of ATM processes. Admittedly, this
is not the way an ATM system would actually be imple-
mented but it serves its purpose for illustrating simple
semaphore usage. The code in ‘bank.c’ creates the segment
and initializes all ten accounts so they have $501.00 each.
The code in ‘forker.c’ creates ten processes running the code
in ‘atm.c’. All that each ATM process does is perform the
transaction described at the beginning of this article. Even
numbered ATM processes operate on the account numbered
with their “process number” while odd numbered processes
operate on the same account as the preceding even numbered
process. Thus, odd numbered accounts will not be touched
while even ones will have to $500 debit transactions per-
formed against them.

This is the reorganized output from a run without
synchronization. (That is, I removed all the semaphore code.)
Notice that $1000 dollars was incorrectly dispensed from all
even numbered accounts.
account#0:initial balance is 501.000000.
account#1:initial balance is 501.000000.
account#2:initial balance is 501.000000.
account#3:initial balance is 501.000000.
account#4:initial balance is 501.000000.
account#5:initial balance is 501.000000.
account#6:initial balance is 501.000000.
account#7:initial balance is 501.000000.
account#8:initial balance is 501.000000.
account#9:initial balance is 501.000000.
acct #0:$500.00 dispensed. Please bank here again!
acct #0:$500.00 dispensed. Please bank here again!
acct #2:$500.00 dispensed. Please bank here again!
acct #2:$500.00 dispensed. Please bank here again!
acct #4:$500.00 dispensed. Please bank here again!
acct #4:$500.00 dispensed. Please bank here again!
acct #6:$500.00 dispensed. Please bank here again!
acct #6:$500.00 dispensed. Please bank here again!
acct #8:$500.00 dispensed. Please bank here again!
acct #8:$500.00 dispensed. Please bank here again!
account#0:final balance is 1.000000.
account#1:final balance is 501.000000.

9

HANDS-ON
account#2:final balance is 1.000000.
account#3:final balance is 501.000000.
account#4:final balance is 1.000000.
account#5:final balance is 501.000000.
account#6:final balance is 1.000000.
account#7:final balance is 501.000000.
account#8:final balance is 1.000000.
account#9:final balance is 501.000000.

This is the reorganized output from a run with synchro-
nization. Notice that the system now performs correctly since
all transactions are synchronized.
account#0:initial balance is 501.000000.
account#1:initial balance is 501.000000.
account#2:initial balance is 501.000000.
account#3:initial balance is 501.000000.
account#4:initial balance is 501.000000.
account#5:initial balance is 501.000000.
account#6:initial balance is 501.000000.
account#7:initial balance is 501.000000.
account#8:initial balance is 501.000000.
account#9:initial balance is 501.000000.
acct #0:$500.00 dispensed. Please bank here again!
acct #0: Sorry not enough money.
acct #2:$500.00 dispensed. Please bank here again!
acct #2: Sorry not enough money.
acct #4:$500.00 dispensed. Please bank here again!

acct #4: Sorry not enough money.
acct #6:$500.00 dispensed. Please bank here again!
acct #6: Sorry not enough money.
acct #8:$500.00 dispensed. Please bank here again!
acct #8: Sorry not enough money.
account#0:final balance is 1.000000.
account#1:final balance is 501.000000.
account#2:final balance is 1.000000.
account#3:final balance is 501.000000.
account#4:final balance is 1.000000.
account#5:final balance is 501.000000.
account#6:final balance is 1.000000.
account#7:final balance is 501.000000.
account#8:final balance is 1.000000.
account#9:final balance is 501.000000.

Notice that the code does not remove the semaphore at
any point. This is because we cannot guarantee an ordering
on the execution of the ATM processes so none of them can
destroy it for fear of doing so before all the other processes
were finished. The semaphore could have been created by
the banker process and explicitly removed after the 60
seconds. In the interest of brevity I simply omitted this code.

Next time we will look at the development of a print
spooler application which uses shared memory and
semaphores, and the resulting code. ✒

/**********/
/* acct.h */
/**********/
/* balances for 10 accounts - small bank */
typedef struct acct {

float balances[10];
} ACCT, *ACCTPTR;

/************/
/* forker.c */
/************/

main()
{

int i, /* simple counter */
pid; /* forked process' pid */

char argstr[16]; /* converted pid string */

/* this code simply creates ten identical */
/* processes to run the program 'atm.c' */
/* which simulates the actions of an */
/* Automated Teller Machine (ATM). */
for (i=0;i<10;i++) {

pid=fork(); /* fork a new process */
if (pid==0) {

/* we are child process so... */
/* execute the atm program, */
/* passing it a process num */
sprintf(argstr,"%d",i);
execl("/home/cs/staff/pgraham/

misc/tuug/shm_article/part2/atm",
 "atm",argstr,(char *)0);

}
}

} /* end main */

/**********/
/* bank.c */
/**********/

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include "acct.h"

/* necessary because of problem */
/* with SunOS include file shm.h */
#define SHM_W 0200 /* shm write permission */
#define SHM_R 0400 /* shm read permission */

main()
{

int i; /* simple counter */
key_t acct_shmkey; /* key to shm seg*/
int acct_segid; /* shm segment ID */
ACCTPTR acct_segaddr; /* seg ptr */
/* need for call to 'shmctl()': */
struct shmid_ds *acct_shmbfptr;

/* this code creates the shared memory */
/* segment and initializes it. */

/* creating unique key/name for acct seg */
if ((acct_shmkey=ftok("/home/cs/staff/

pgraham/misc/tuug/shm_article/part2/forker.c",
'M'))==-1) {

printf(
 "Couldn't create shared memory key.\n");

exit(-1);
}

10

/* call shmget to create it */
if ((acct_segid=shmget(acct_shmkey,

sizeof(ACCT),
IPC_CREAT|SHM_R|SHM_W))==-1) {

printf(
"Couldn't get the shared memory segment.\n");

exit(-1);
}

/* and map it into our address space at */
/* address returned in 'acct_segaddr'. */
if ((acct_segaddr=(ACCTPTR)

shmat(acct_segid,(char *)0,0))
==(ACCTPTR) (-1)) {

printf(
 "Couldn't attach shared memory segment.\n");

exit(-1);
}

/* Put some balances in the accounts */
for (i=0;i<10;i++) {

acct_segaddr->balances[i]=501.00;
}
printf(
"Bank is open for business for 1 minute.\n");
/* allow time to run the ATM processes */
sleep(60);

/* detach the shared memory segment */
if (shmdt((char *) acct_segaddr)==-1) {

printf(
 "Couldn't detach shared memory segment.\n");
}

/* now remove shared segment altogether */
if (shmctl(acct_segid,IPC_RMID,

acct_shmbfptr)==-1) {
printf(

 "Couldn't remove shared memory segment.\n");
}

}

/*********/
/* atm.c */
/*********/

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include "acct.h"

/* necessary because of problem */
/* with SunOS include file shm.h */
#define SHM_W 0200 /* shm write permission */
#define SHM_R 0400 /* shm read permission */

/* Semaphore wait operation */
s_wait(sema)
int sema;
{

static struct sembuf op_wait[2] = {

0, 0, 0, /* wait for zero semaph.*/
0, 1, 0 /* then increment by 1 */

};

semop(sema, &op_wait[0], 2);
} /* s_wait */

/* Semaphore signal operation */
s_signal(sema)
int sema;
{

static struct sembuf op_signal[1] = {
0, -1, IPC_NOWAIT,
/* decrement semaphore by 1 */
/* NOWAIT ensures no waiting */

};

semop(sema, &op_signal[0], 1);
} /* s_signal */

transaction(acct,acct_segaddr)
int acct; /* account number to work on */
ACCTPTR acct_segaddr; /* mapped segment ptr */
{

float balance; /* current balance */

/* read the balance */
balance=acct_segaddr->balances[acct];

/* sleep so as to force a context switch */
/* to simulate concurrent execution of */
/* the processes. */
sleep(1);

/* check the balance */
if (balance < 500.00) {

printf(
 "acct #%d: Sorry not enough money.\n",acct);
} else {

/* debit the balance */
balance-=500.00;

/* write the balance back */
acct_segaddr->balances[acct]=balance;

/* dispense the money */
printf("acct #%d:%s\n",

"$500.00 dispensed. Please bank here again!",
 acct);

}
} /* transaction */

main(argc,argv)
int argc;
char *argv[];
{

int i, /* simple counter */
process_num; /* this process' num */

key_t acct_shmkey, /* shm segment key */
acct_semkey; /* shm semaphore key */

HANDS-ON

11

int acct_segid, /* shm segment ID */
acct_semid; /* shm semaphore ID */

/* pointer to mapped shared segment: */
ACCTPTR acct_segaddr;

/* this code runs some sample */
/* transactions against the accounts */

/* create unique key/name for shared seg */
if ((acct_shmkey=ftok("/home/cs/staff/

pgraham/misc/tuug/shm_article/part2/forker.c",
'M'))==-1) {

printf(
 "Couldn't create shared memory key.\n");

exit(-1);
}

/* call shmget to "open" it */
if ((acct_segid=shmget(acct_shmkey,

sizeof(ACCT),SHM_R|SHM_W))
==-1) {

printf(
"Couldn't get the shared memory segment.\n");

exit(-1);
}

/* map it into our address space at an */
/* address returned in 'acct_segaddr'. */
if ((acct_segaddr=(ACCTPTR)

shmat(acct_segid,(char *)0,0))
==(ACCTPTR) (-1)) {

printf(
 "Couldn't attach shared memory segment.\n");

exit(-1);
}

/* create unique key/name for semaphore */
if ((acct_semkey=ftok("/home/cs/staff/

pgraham/misc/tuug/shm_article/part2/forker.c",
'S'))==-1) {

printf("Couldn't create semaphore.\n");
exit(-1);

}

/* call semget to get the semaphore */
if ((acct_semid=semget(acct_semkey,1,

 IPC_CREAT|SHM_R|SHM_W))==-1) {
printf(

"Couldn't get the semaphore.\n");
exit(-1);

}

/* extract our process num from argv[1] */
sscanf(argv[1],"%d",&process_num);

/* print initial balances */
printf(

 "account#%d:initial balance is %f.\n",
 process_num,

 acct_segaddr->balances[process_num]);

/* If we are an even process, we reference*/
/* acct number specified by our process #.*/
/* If odd, we reference the previous acct.*/
/* This way we ensure the possibility of */
/* synchronization problems. */
if ((process_num%2)==0) { /* even numbered*/

s_wait(acct_semid);
transaction(process_num,acct_segaddr);
s_signal(acct_semid);

} else { /* odd numbered process */
s_wait(acct_semid);
transaction(process_num-1,

acct_segaddr);
s_signal(acct_semid);

}

/* print final balances */
printf("account#%d:final balance is %f.\n",

process_num,
 acct_segaddr->balances[process_num]);

/* detach the shared memory segment */
if (shmdt((char *) acct_segaddr)==-1) {

printf(
 "Couldn't detach shared memory segment.\n");
}

}

HANDS-ON

THE FORTUNE FILE

Misc. Riddles
Submitted by Adam Thompson

“VMS is a text-only adventure game. If you win you can use unix.”

Q: Is there a UNIX FORTRAN optimizer?
A: Yeah, “rm *.f”

Q: How many Unix Support staff does it take to screw in a light bulb?
A: Read the man page!

12

PTH 59

PTH 44

PTH 9
(Main St.)

Red
River

PR 204
(Henderson)

PR 204
(Henderson N.)

PR 509

Floodway

Lockport

To Selkirk

Schneider’s
8483 Henderson Hwy. N.

Strawberry
Patch

Map is NOT drawn
to scaleTo Winnipeg

MEETINGS

Annual MUUG Barbecue
June 2, 6:00 pm

Host: Roland Schneider
phone: 1-482-5173

Where: The Schneiders'
8483 Henderson Hwy N. (PR 204)
Across from The Strawberry Patch
About 20 minutes from the Perimeter
(See map)

When: Tuesday, June 2, 6:00 pm
(1 week earlier than our normal meetings)

Bring: Meat to cook
Beer
Lawn chairs

RSVP:Roland Schneider
1-482-5173
(days and evenings)
e-mail: rsch@muug.mb.ca
or
Susan Zuk
788-7312 (days)

We will supply chips and other nibble food, soft drinks, salads, and a cake. (and insect repellent if neces-
sary) Spouses or significant others, and children, are also welcome. Bring a swimsuit if you want to take
a dip in our pond.

c) Treasuer’s Report
• MUUG has $1800 in chequing account and $8000

invested.
d) New Business

• Moved by Gilbert Detillieux, seconded by Peter
Graham, that the MUUG executive be authorized to
spend up to $2600 to aquire a large SCSI disk for the
MUUG Online system.
- other, preferably free, alternatives will be explored

before a disk is purchased.
- passed unanimously.

Presented topic:
Future trends at Intel – Jon Coxworth, Intel Corp.

Chair: Susan Zuk
Attendance: 47

Business meeting:
a) President's Report

• There was significant interest in MUUG’s booth at the
MWCS computer fest.

• The MUUG Online project is making progress.
• MUUG hopes for future joint projects with CIPS.
• The process of affiliation with UniForum is

proceeeding.
b) Membership Report

• TUUG currently has 84 members

TUUG Meeting Minutes
Tuesday, May 12, 1992, 7:30 PM

234B Engineering Bldg., University of Manitoba, Ft. Garry Campus

13

MUUG Goes Online!
Continued from page 1

Ftp
Ftp stands for ‘File Transfer Protocol’, and is used to copy
ASCII and binary information across the Internet. Ftp is the
usual method of obtaining PD software from other sites. It is
usually used interactively to search through a restricted area
on a remote site’s disk and retrieve the desired data. Because
ftp is an interactive program, this service will not be avail-
able through UUCP, although we may be able to set up an
ftp-via-UUCP or ftp-via-e-mail service in the future.

UUCP
UUCP (UNIX to UNIX CoPy) is a system of programs
which allows files, e-mail, news, and other information to be
transmitted via dialup modem connections. When properly
set up, all communications happen in the background, and
the link is essentially transparent. MUUG Online will be
providing UUCP links as soon as possible. To get a UUCP
link, you will first need an account on MONA. Further
information will be posted on MONA when we are ready to
begin offering UUCP service.

PD Software
There is a lot of public domain software available for UNIX
systems. Instead of having everyone retrieve the same
software from the Internet repeatedly, we want to establish a
repository of current versions of general-interest software on
MONA. This software will then also be made available to
MUUG members via tape and/or floppy disk.

Costs
There are some real costs involved in running the MUUG
Online project. Although we don’t pay anything for the
Sun386i or it’s network connections, we do have to fix or
replace it if it breaks, and we have to obtain a large SCSI
disk (1Gb) to provide spool space for news and storage for
downloaded PD software. We are working on getting the
disk for as little money as possible, perhaps even for free.
Access to MUUG Online will be free for MUUG members
until October, after which there will likely be a small ($30-
$40 per year) charge for using the system.

Instructions
To access MONA interactively, you will need to get an
account application form, fill it in, and mail it to MUUG or

give it to a member of the executive. Account applications
were included in last month’s newsletter.

Once you have an account, use your modem to dial 275-
6100 (300/1200/2400 bps) or 275-6132 (9600 bps, V.42bis,
MNP5). Press RETURN once the connection is established and
answer “muug” to the classname prompt. You will then be
connected to MONA and asked for your userid and pass-
word. You will then be asked for your terminal type. Many
communications packages emulate a DEC VT100. If you
don’t know what type of terminal you are emulating,
“vt100 ” or “ansi ” are good choices, with “dumb” as a last
resort. (After you have logged on, look in the file /etc/
termcap for a list of all the available terminal types, or type
“help termtype ”)

Once you have logged in, you can type the command
“news” to find out about the status of the MUUG Online
project and other information of interest to MUUG members.
Note that this is not related to the Usenet news described
above. Use the command “help ” to obtain advice about
various procedures. Use “man” to access the online UNIX
manuals.

Thanks
The entire MUUG Online project would not be possible
without the generosity of the University of Manitoba
Computer Centre and the assistance of the people there. We
would especially like to thank Bill Reid, Kathy Norman, and
Gary Mills. MUUG members continue to put a lot of effort
into the project. Thanks are due to Andrew Chan for setting
MONA up and getting all sorts of stuff working, to Gilles
Detillieux for his work on the e-mail configuration, and to
Gilbert Detillieux for setting up and coordinating many other
aspects of the project.

To Find Out More
To find out more about MUUG Online, or to get a MUUG
Online application form, please contact Roland Schneider at
1-482-5173 (days and evenings) or send e-mail to
“ info@muug.mb.ca ”. ✒
Roland Schneider is a Ph.D. student in Electrical Engineer-
ing at the University of Manitoba. He is also the MUUG
secretary since October, 1991.

ONLINE

Meeting:
Our next meeting is scheduled for Tuesday, September
8, at 7:30 PM (since we don’t meet in July and August).
Meeting topic and location will be given in September’s
newsletter. Meanwhile, enjoy the summer!
Online:
Watch for changes this summer to MUUG Online –
more disk space, more software. Also, we’ll try to keep
a round table forum going on the local news groups.

Coming Up

Newsletter:
We will likely continue with RPC Programming by
Scott Balneaves. We will also have part 3 on shared
memory by Peter Graham, and several “filler” articles
by Roland Schneider. Thanks again to all those who
submitted those great articles throughout the year.
Please keep the articles coming this summer – we’ll
need lots of material for the fall. Also keep in mind that
nominations for the elections come up in September.

