
MUUG Lines 1 January 1994

Volume 6, Number 3

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Manitoba UNIX® User Group

MUUG Lines

Inside This IssueThis Month’s Meeting

Newsletter of the Manitoba UNIX ® User Group

January 1994 $2.50

A Very Brief Look at Unix History
By Pierre (P.) Lewis

Submitted by Andrew Trauzzi

Meeting Location:
Our next meeting is scheduled for Tuesday, January
11, at 7:30 PM. Once again, the meeting will be held
in the auditorium of the St-Boniface Hospital
Research Centre, just south of the hospital itself, at
351 Taché. You don’t have to sign in at the security
desk — just say you’re attending the meeting of the
Manitoba UNIX User Group. The auditorium is on
the main floor, and is easily found from the en-
trance.

Meeting Agenda: See inside for details.

Unix history goes back to 1969 and the famous “little-used
PDP-7 in a corner” on which Ken Thompson, Dennis Ritchie
(the R in K&R) and others started work on what was to
become Unix. The name “Unix” was intended as a pun on
Multics (and was written “Unics” at first — UNiplexed
Information and Computing System).

For the first 10 years, Unix development was essentially
confined to Bell Labs. These initial versions were labeled
“Version n” or “Nth Edition” (of the manuals), and were for
DEC’s PDP-11 (16 bits) and later VAXen (32 bits). Some
significant versions include:

V1 (1971): 1st Unix version, in assembler on a PDP-11/
20. Included file system, fork(), roff, ed. Was used as a text
processing tool for preparation of patents. Pipe() appeared
first in V2!

V4 (1973): Rewritten in C, which is probably the most
significant event in this OS’s history: it means Unix can be
ported to a new hardware in months, and changes are easy.
The C language was originally designed for the Unix
operating system, and hence there is a strong synergy
between C and Unix.

V6 (1975): First version of Unix widely available
outside Bell Labs (esp. in universities). This was also the
start of Unix diversity and popularity. 1.xBSD (PDP-11)
was derived from this version. J. Lions published “A
commentary on the Unix Operating System” based on V6.

 V7 (1979): For many, this is the “last true Unix”, an

“improvement over all preceding and following Unices”
[Bourne]. It included full K&R C, uucp, Bourne shell. V7
was ported to the VAX as 32V. The V7 kernel was a mere
40 Kbytes!

 These Vn versions were developed by the Computer
Research Group (CRG) of Bell Labs. Another group, the
Unix System Group (USG), was responsible for support. A
third group at Bell Labs was also involved in Unix develop-
ment, the Programmer’s WorkBench (PWB), to which we
owe, for example, sccs, named pipes and other important
ideas. Both groups were merged into Unix System Develop-
ment Lab in 1983.

Work on Unix continued at Bell Labs in the 1980s. The
V series was further developed by the CRG (Stroustrup
mentions V10 in the 2nd edition of his book on C++), but we
don’t seem to hear much about this otherwise. The company
now responsible for Unix (System V) is called Unix System
Laboratories (USL) and is majority-owned by AT&T.
Novell bought USL in early 1993.

But much happened to Unix outside AT&T, especially
at Berkeley (where the other major flavor comes from).
Vendors (esp. of workstations) also contributed much (e.g.
Sun’s NFS).

The book “Life with Unix” by Don Libes and Sandy
Ressler is fascinating reading for anyone interested in Unix,
and covers a lot of the history, interactions, etc. Much in this
article is summarized from this book. ✒

Newsletter Editor’s Ramblings 2
President’s Corner3
QNX: A Realtime UNIX4
C++ Q & A ...6
UNIX Q & A ...8
OS/2 2.1: UNIX Utilities Invade 9
SIG Sideline ..10
Jan 11th Meeting Agenda 10

MUUG Lines 2 January 1994

President: Bary Finch (W) 934-2723
Vice-President: Ramon Ayre (W) 947-2669
Treasurer: Rick Horocholyn (W) 474-4533
Secretary: Brad West (W) 983-0336
Membership Sec.: Greg Moeller (H) 786-6132
Mailing List: Roland Schneider 1-482-5173
Meeting Coordinator: Roland Schneider 1-482-5173
Newsletter editor: Andrew Trauzzi (W) 986-6009
Publicity Director Rory McLeod 488-5168
Past President Susan Zuk (W) 631-2530
Information: Bary Finch (W) 934-2723

(FAX) 934-2620
(or) Andrew Trauzzi (W) 986-6009

(FAX) 986-5966

This newsletter is ©opyrighted by the Manitoba
UNIX User Group. Articles may be reprinted
without permission, for non-profit use, as long as
the article is reprinted in its entirety and both the
original author and the Manitoba UNIX User
Group are given credit.

The Manitoba UNIX User Group, the editor, and
contributors of this newsletter do not assume any
liability for any damages that may occur as a result
of information published in this newsletter.

The Manitoba UNIX User Group meets at 7:30 PM the
second Tuesday of every month, except July and
August. Meeting locations vary. The newsletter is
mailed to all paid-up members one week prior to the
meeting. Membership dues are $25 annually and are
due as indicated by the renewal date on your
newsletter’s mailing label. Membership dues are
accepted at any meeting, or by mail.

Manitoba UNIX User Group
P.O. Box 130, Saint-Boniface
Winnipeg, Manitoba R2H 3B4

Internet E-mail: membership@muug.mb.ca

Quarter page $50
Half page $75
Full page $100
Insert (1-4 pages) $100

Above prices are per issue. The first ad is charged at
the full price; each successive month is 1/2 price.

Ad copy must be submitted by the final copy
deadline for an issue (usually 3 weeks prior to the
monthly meeting) in a format acceptable to the editor.
(Please make arrangements with editor beforehand.)

Internet E-mail: editor@muug.mb.ca

Copyright Policy and DisclaimerThe 1993-1994 Executive

Advertising Rates Group Information

New Year, New Attitude?
By Andrew Trauzzi

First of all, happy new year everyone! I’m sure many of you have
made new year’s resolutions — some you will keep, and some you
won’t. My new year’s hope is that I will become less pessimistic
about the computer industry and the direction it takes. I am pleased
to see results from the alliances formed between companies (e.g.
PowerPC, Taligent, etc.), and I hope that 1994 will be a banner year
for them.

This month’s speaker will be discussing one of these alliances —
COSE. I would like to quickly bring you up to date on the COSE
story (aside from all the bad puns).

COSE
COSE (The Common Operating Software Environment) is an effort
by the major UNIX vendors to create a standard desktop environment
that provides users with a common look and feel. COSE’s
members include: HP, IBM, USL, SCO, Univel, DEC, and SunSoft
— all coordinated by the X/Open consortium (the people whom
Novell trust to further develop UNIX). The final product will
include components from HP’s visual environment, IBM’s
Common User Access mode and Workplace Shell, Open Software
Foundation’s Motif and Window Manager, SunSoft’s OpenLook
and Deskset productivity tools, and UNIX SVR4.2 Desktop
Manager from Unix Systems Laboratories.

Last June, COSE released a 100 page specification document

outlining the incorporation of the products listed above. The spec
also outlined some of the tools that developers required in order to
make UNIX more popular such as: basic administration, data
editing and display, desktop integration, object/folder management,
and window management. The main complaint with the spec is that
it had nothing concrete to say. As one analyst put it “This is one of
the biggest non-announcements I’ve seen in my time!” Furthermore,
the tools outlined in the spec are already kind of “standard”, such as
X-Windows and Motif.

Spam?
Many people are asking themselves: “Why would all the UNIX
vendors want to get together?” Most people agree that COSE was
formed to unite UNIX vendors against Microsoft’s muscle and all
the alpha-beta-beta-spam-beta versions of NT and/or Cairo. I think
that the biggest obstacles to COSE are the vendors themselves. Can
you imagine so many vendors with such varied interests and
priorities agreeing on standards? The technical task of standardizing
UNIX seems far easier than attempting to resolve the political
issues at large.

Look for COSE-approved technologies in the second half of
1994. If you want a copy of the spec, send a request to:

<XoCdeSpecs@xopen.co.uk >.
Did I sound a little pessimistic? Oh well, old habits die hard! ;) ✒

RAMBLINGS

MUUG Lines 3 January 1994

PRESIDENT’S CORNER

CORPORATE SPONSORS

The Manitoba UNIX User Group
gratefully acknowledges the

generous support of the following

Corporate Sponsors

 The New Year
By Bary Finch

Great-West Life Assurance
Company

Well now I have to get used to writing 1994. This is always an
interesting challenge which may take a few weeks and a few
spoiled cheques to perfect. But it is a new year and that always
carries a sense of optimism with it. We have a lot to look forward
to in this new year, but first I’d like to wrap up last year.

We held our annual Wine and Cheese as our December
meeting and had a good turnout. There was a great selection of
wines, cheeses, and other delectable munchies, and we have Roland
Schneider to thank for that. He coordinated the liquor and liquor
license as he would in his new role of Meeting Coordinator.
However, he went all out and prepared all the cheeses and other
food as well. Thanks again for all the help!

I mentioned Roland taking over as Meeting Coordinator as
Paul Hope has had the luck/misfortune of too much happening at
work. This is actually a promising sign these days, to know that you
are a needed part of the organization. Paul will continue to arrange
for our meetings to be held at the St. Boniface Research Center.
Thanks for all your contributions as Meeting Coordinator!

Display!
Another big thank you goes out to Andrew Sametz of The CD
Factory. He provided an excellent display of CD-ROM cutting
technology (no pun intended). He also had the unexpected delight
of being the sole display present. We had several other displays
have to cancel at the last minute due to technical difficulties
(really!!).

And that wraps up 1993 with a successful celebration. Now we
continue into 1994 with a great series of upcoming meetings to

keep you informed on the current and emerging technologies.
Our January meeting topic is being provided by Hewlett-

Packard. Their speaker will be talking on COSE, the Common
Open Software Environment. This is one of the evolving efforts in
the UNIX industry to standardize on a common front end to all
UNIX operating systems, or as many as possible. This presentation
should be of great interest to anyone who works with UNIX.

Our February presenter will be Smoot Carl-Mitchell of Texas
Internet Consulting. This will be part 2 of our presentations on the
Internet, where part 1 was presented by Dr. Roger Taylor. Smoot
Carl-Mitchell is a consultant on network management, as well as a
regular contributor for magazines. This should be an outstanding
presentation, so book February 8 on your calendars now!

Future Topics
To continue our discussions of emerging technologies, we will have
a presentation on the new PowerPC chip for our March meeting.
This will be provided by IBM, whose PowerPC product is the RISC
System/6000 Model 250. Okay, okay, it’s no coincidence that I
know the model of RS/6000 that the PowerPC is in, seeing as how
it’s the product line that I support as an IBM Systems Engineer!

With this review of the upcoming presentations I hope it gets
you as excited about our 1994 meetings as it does me. I think we
are getting the “hot” topics presented to you. If you have any
opinions on what you think about past topics, or any you want to
see in the future, please feel free to contact myself or anyone else
on the board. We’re always glad to hear from any members.

Looking forward to seeing you at our January meeting! ✒

TM

MUUG Lines 4 January 1994

QNX: A Realtime Unix
By Rennie Allen

utilities and shell “Unix like” (there were no standards to follow in
1982), hence the birth of Qunix (before AT&T’s lawyers suggested
that they change the name ;-).

QNX developed a large following as a RTOS in the following
7 years, when, in 1989 — with standards becoming available for
Unix, QSSL (QNX Software Systems Limited), embarked on a
project to make QNX a real Unix operating system, rather than just
“Unix-like.”

Easy Porting
To this end they provided Posix 1 (1003.1) and Posix 2 (1003.2)
compliance, as well as selected SYS V (System V) and BSD
(Berkeley Software Distribution) libraries. This level of “Unixness”
is sufficient to allow successful compilation, linking, and execution,
of any Unix source which is ANSI conforming, and that obeys
Posix 1, (but may utilize SYS V and BSD calls where Posix 1 has
no say), typically with little alteration. This level of compatibility
is high enough to allow simple porting of most freeware on the
Internet. Internet code which exhibits a high degree of portability,
and is “modern” (i.e. was developed on an ANSI standard com-
piler), usually ports with no alteration. What does this level of
compatibility really mean? Well, I ported gopher2.0+ in 3 hours.

Gopher client is a non-trivial application utilizing curses and
sockets. 90% of the time was spent configuring the
headers and makefile correctly. I have also ported
ncftp (15 minutes), elm (2 hours), gzip (0 min), and
gfax (5 hours). Other QNX users have ported
ghostscript, dbm, perl, groff, xv, tvm, xmpeg, and
several other packages. Of course, the Posix 2
compliance makes operating at the shell identical to
any other Posix 2 system, and very nearly the same
as most other non-Posix Unixes (there isn’t a great
deal of difference between Posix 2 and traditional
Unix). QNX is currently preparing a new version in
order to fully support the realtime Posix standards

(the 4’s) which should be completed next year. Based on QSSL’s
commitment to standards, I would expect that QSSL will take QNX
to spec1170 compliance as well, in order to earn the legal right to
call QNX a realtime Unix, and to further enhance the portability of
Unix code to and from QNX.

With both the “what is real-time” and “what is Unix” bases
(hopefully :-) covered, we can proceed with a discussion of some of
the unique features that make QNX an OS well suited to the
development of real-time and/or embedded applications.

What makes QNX different?
QNX has taken a different approach than many other RTOS
vendors. Most other RTOS’s host their development environment
on another platform (typically Unix or DOS), and provide a small
OS that is designed to run comfortably in an embedded computer (a
very common configuration for a real-time system). QNX, being a
micro kernel based operating system (the micro kernel is about
9000 bytes), is fully modular, and therefore allows you to “plug-in”
modules in order to bring the OS up to a level suitable for use as a
development platform. For instance, QNX has two “process
managers” or Proc’s (pronounced P’rock) in QNX lingo — one a
16 bit (which runs only 16 bit applications), and the other a 32 bit
(which runs 16 bit or 32 bit applications). Many real-time/
embedded applications do not require a 32 bit operating system
(with the additional overhead), and as such would be configured ☛

What is a real-time Unix? To answer this, it’s best to explain the
term real-time as it applies to computers. Real-time, simply stated,
is the ability for a computer system to interact with an external
system without compromising the external system’s inherent time
constraints. This implies that a computer system can be considered
real-time (for the system in which it is intended to operate), if it
exhibits a deterministic response to events within the system which
are within the bounds of allowable worst-case response times for
that system.

Determinism?
If you’re new to real-time, you may not be familiar with the term
“determinism” (or deterministic), as it is rarely used outside of the
real-time industry. A deterministic system is one in which the
worst-case time for a particular action can be determined. It is
generally considered highly desirable, (although not technically
necessary to be considered real-time), that a real-time system
exhibit minimal variation between best-case and worst-case times
for a particular action, and that it exhibit high capacity for I/O
throughput (i.e. fast).

Back to our question; what is a real-time Unix? Well, a real-
time Unix is a Unix-compatible operating system (we’ll get to the
specifics of what “compatible” means later), which
exhibits the required deterministic qualities for a
relatively large domain of applications. Why do I
place the caveat “relatively large domain of
applications” on my definition of real-time Unix?
Well, my definition of real-time states that the
“external system” provides the constraints that
determine whether a system can be considered real-
time; therefore, you can’t assert that any computer
system is real-time without stating what the
application domain is! While this statement is
technically correct, I am sure you know that there
are computer systems out there which claim to be
real-time without any mention of a particular application domain.
What is generally meant when people refer to a real-time system, is
that the system is designed to be fast, deterministic, and reliable (it
is up to the software engineer designing the real-time system to
determine whether it is fast enough, and reliable enough :-).

While a complete discussion of real-time involves the external
system, the computer hardware, the operating system, and the
software applications I am going to discuss only the operating
system, since it is typically the most important link in designing a
real-time system. Because of my familiarity with QNX, I will
discuss real-time operating systems using QNX as an example.

QNX History
The originators of QNX (Dan Dodge and Gord Bell), did not
specifically set out to develop a real-time operating system. Back
in 1980, they were hobbyists playing around with a little OS
designed around a relatively new kind of architecture called a micro
kernel. It just so happens that micro kernels (being small), lend
themselves very nicely to real-time (small = less code = fast).
When Dan and Gord decided to commercialize QNX, they chose to
pursue the area of Intel based (at that time the IBM PC) real-time,
since it was a totally untapped area. Both Dan and Gord had a great
deal of exposure to Unix at the University of Waterloo, and
consequently when it came time to create a user interface for their
RTOS (real-time operating system), they decided to make the

“ A real-time
operating system

is generally
designed to be

fast, deterministic,
and reliable.”

INDUSTRY

MUUG Lines 5 January 1994

INDUSTRY
with the 16 bit Proc, while a development system (running X
Windows, and utilizing gnu utilities etc.) must have 32 bit (try
porting X without it!), and would load a 32 bit Proc. Since the 32
bit Proc will also run 16 bit applications, the developer can test the
applications he is developing on his/her own workstation.

Networking
A very notable area where QNX provides functionality outside of
the realm of Unix or other RTOS’s is in its networking. While
QNX has a full BSD Net-2 distribution of TCP/IP with NFS (both
client and server), QNX also has its own proprietary network.
QNX’s network protocol is a “lightweight” protocol designed to
facilitate the merging of multiple micro kernels (running on
different processors across the network), into a single logical
network-wide micro kernel (macro kernel?). This makes QNX a
fully network distributed OS, which adds another layer of
scalability and reliability (QNX supports multiple network
connections with load balancing, and automatic fault recovery).
When combined with TCP/IP, an entire network of QNX machines
will consume only one IP address (since the QNX “network” is
logically a single computer). Being a distributed OS affords
developers another method to test his/her applications. Since the
QNX network is one logical computer, the developer can (in a
suitably configured network), command the OS to run his test
application on an actual embedded processor (configured identi-
cally to the actual target processor), without any “downloading”, or
other productivity-robbing processes (the embedded processor is
simply another “cpu space” in which to execute the
application).

Gobs of GUI
When it comes to GUI support, QNX is unrivaled.
QNX supports (in no particular order): QNX
Windows (an object oriented GUI similar to
NeXTstep), Photon (an embedded windowing
environment — 256 KB in size), X-Windows (we all
know what this is :-), and MS-Windows (we all
know what this is too ;-). The plethora of
windowing options, while somewhat confusing,
provides a great deal of flexibility. QNX’s application builder (a
GUI code generator), can generate applications for QNX Windows,
X Windows, or Photon. Development of MS Windows apps is
supported through the standard SDK’s, or MS-Windows hosted
GUI builders. MS-Windows apps can communicate with QNX
apps through file-descriptor based I/O (pipes). Photon (the
embedded windowing environment) is a fully network distributed
windowing system. By fully network distributed I am not talking
client-server (like X-Windows or QNX-Windows), but absolutely
network transparent. This can get very weird, (if you let it) since
Photon is inherently capable of dragging a window off a display
attached to one computer across the network to another computer.
This would allow (for instance), one person to “give” an application
to a user on another machine (while it’s running) simply by
dragging the window into the virtual space managed by that users’
computer. While this behaviour is simply a “side-effect” of
Photons’ design (and the underlying QNX architecture), and it may
not be terribly practical, it does serve to illustrate the power of the
underlying distributed operating system (remember Photon is only
256KB!).

Development tools
Anyone developing real-time applications will be very concerned
about the quality of development tools available. QNX provides
both the Watcom C and C++ compilers. The Watcom 32 bit C/C++
compiler is a highly optimizing (Pentium optimizations included),
compiler, which utilizes register-based argument passing (rather

than stack-based). The Watcom compiler is highly rated in the
DOS-Windows-OS/2 world for the speed of the executables, and
QNX has the distinction of being the only Unix OS to currently host
it. The Watcom compiler has passed the Plum Hall validation suite
(for ANSI compatibility) with 100% compliance, and the C++
compiler supports true exception handling, and templates. In
addition I have heard recently that a port of gcc to QNX has been
completed, so if you’re game for writing your own libraries, you
can develop commercial software with a free compiler, or
alternatively, if your projects are for internal use you can “simply”
write the QNX specific portions of the libraries (this is a non-trivial
but doable project) and use the glib, for the non QNX-specific
standard library functions.

Debugging? Ha!
As for debugging tools... who needs ‘em?... only people who have
bugs in their code... right ? Well for those of you like me, it is
fortunate that the Watcom compiler comes with a very good, full
screen, source-level debugger, which fully supports C++ name
demangling, and definitely requires a mouse to be usable (you
should hear the whining from people who try to use it without a
mouse ;-). Finally, QNX ships RCS with the operating system, as
well as all the usual tools you expect in a Unix environment (and
must have to be Posix 2 compliant). In addition to the compilers,
debugger, and general utilities for development, QNX, as men-
tioned earlier, has a product called the application builder to aid in
producing GUI applications. There is also a third party macro

assembler available (called MAX), for those
masochistic (or purist — depending on your point
of view), souls, who like to code in assembler (sick,
sick, puppies). I should point out that a human
cannot develop better assembler code than the
compiler for either the 80486 or Pentium parts,
since these parts require instructions to be out-of-
sequence in order to be fully optimal (I suppose it is
possible for a human to reorder instructions and be
as efficient as the compiler, but doing this would be
the act of a desperate and depraved individual :-).

I think it should be fairly obvious that there is no need for
“tool starvation” in a QNX based environment, as the tools are very
complete and powerful.

Potential applications
Well, you say, all of this is well and good but why do I need a real-
time Unix as opposed to a non-real-time Unix? The answer might
be that you don’t, it all depends on your application domain. One
of the currently hot application areas that most definitely requires
real-time capability is multimedia. Picture if you will, an MPEG
movie. In order to obtain full-motion video you need 30 frames/
second, not an average of 30 frames/second, but 30 frames/second
— no exceptions. If you don’t get the required frame every 1/30th
of a second there will be a noticeable “jitter” in the sequence. In
this case the application domain requires that X bytes of picture
data be delivered and displayed in 1/30th of a second. It must be
“determinable” (of the OS) that the worst-case time for the load and
display of the frame image is less than 1/30th of a second (excess
time after the load and display are done, can be used by waiting on
a timer event). In this case it is necessary that the system provide
deterministic response for both the I/O necessary to load the picture,
the computation necessary to prepare the picture, and the I/O
necessary to move the picture to the display device, and have it
displayed. To obtain high-quality multi-media (you’ve probably
witnessed jittery non-realtime MPEG movies) a real-time OS is
required. In a non-deterministic OS it might be possible to have 30
frames/sec displayed, as long as the loading on the system is ☛

“ There is no
need for ‘tool

starvation’ in a
QNX-based

environment. ”

MUUG Lines 6 January 1994

low; if suddenly 3 or 4 apps all hit the disk at the same time, the
frame for “this” 1/30th of a second interval could be compromised,
and jitter introduced.

In a real-time OS, the MPEG player would be assigned a
higher priority than the non-real-time apps accessing the disk, and
when the MPEG player wanted to run (i.e. 1/30th of a second has
elapsed since the last frame was displayed), the MPEG player
would pre-empt, all the other processes in the system, thereby
gaining complete access to the computational and I/O capacity of
the system. It can therefore be calculated that by supplying X
computational and I/O bandwidth, we can guarantee that a frame
will be loaded every 1/30th of a second.

The classical application domain for real-time systems is
control systems (and robotics). This is the area most people think
of when they think real-time systems. It is true that missing a
deadline in a control system can have far greater impact on people’s
lives, than if an MPEG movie player misses its frame display
deadline, however, this does not mean that the MPEG player is any
less of a real-time system, simply that it’s not a mission critical,
real-time system.

The other big application area of real-time systems is in
transaction processing. Here, the requirement for deterministic
response is driven mainly by customer satisfaction requirements.
This is known as soft real-time. Soft real-time (previous discus-
sions centred around hard-real-time), is characterized by the
absence of a fixed-deadline. For instance, in transaction processing
(let’s say a credit-card validation system), Visa (for example) might

say to the system developer “95% of the time we want a transaction
to take less than 10 seconds”. The remaining 5% of the time Visa is
willing to let its customers wait; they don’t want to spend the
money to buy the computational horsepower to deliver 100%
deterministic response, but they do want it to be “mostly determin-
istic”. In this case it is still necessary to use a real-time OS, since
you still must be able to determine that you can reach the 95% level
of 10 second (or less) response.

Finding out more
Perhaps you’ve been intrigued by this modest article, and wish to
find out more about real-time Unixes? Well have I got a deal for
you! As you may recall from spring of this year, I had made some
noises about starting a real-time SIG (an RSIG... I love acronyms :-),
well, I am finally getting around to doing something about it. At
the January meeting, I will give a short presentation, on the
proposed RSIG, and leave a sign-up sheet on the desk (the one by
the doors to the auditorium). I would ask that those of you who are
interested, to put your name down on the sheet, and I’ll announce at
the following meeting, whether there is sufficient interest (we need
around 15 interested parties). Remember this is a RSIG (not a
QSIG :-), so whatever RTOS you use (or are considering using),
whether it’s LynxOS/HP-RT, AMX, RMX, Venix, homegrown,
or ? come on down to the January meeting and sign-up. QSSL has
agreed to sponsor the creation of the RSIG by donating software so
that we can set up a real-time demo/test platform, and we will be
seeking sponsorship from other RTOS vendors as well (depending
on interest levels of RSIG members). ✒

INDUSTRY

C++ Q&A
By Marshall P. Cline

The C++ Q&A column was started last month, and this
month continues answering questions.
Question 3: Who uses C++?
Lots and lots of companies and government sites. Lots.
Statistically, 20 to 30 people will consider themselves to be
new C++ programmers before you finish reading the
responses to these FAQs.
Question 4: Are there any C++ standardization efforts
underway?
Yes; ANSI (American) and ISO (International) groups are
working closely with each other. ‘X3J16’ is the name of the
ANSI-C++ committee. ‘WG21’ is the name of ISO’s C++
standards group.

The committees are using the ‘ARM’ as a base docu-
ment: ‘Annotated C++ Reference Manual’, Ellis and
Stroustrup, Addison/Wesley. ISBN 0-201-51459-1

The major players in the ANSI/ISO C++ standards
process includes just about everyone:

AT&T, IBM, DEC, HP, Sun, MS, Borland, Zortech,
Apple, OSF, <add your favorite here>, ... and a lot of users
and smaller companies. About 70 people attend each ANSI
C++ meeting. People come from USA, UK, Japan, Ger-
many, Sweden, Denmark, France, ... (all have ‘local’
committees sending official representatives and conducting
‘local’ meetings).

Optimistically the standard might be finished by 1995-6
time frame (this is fast for a proper standards process).

Question 5: Where can I ftp a copy of the latest ANSI-
C++ draft standard?
You can get a paper copy by sending a request to:

 Standards Secretariat
CBEMA/X3

1250 I Street NW Suite 200
Washington, DC

20005
Ask for the latest version of ‘Working Paper for Draft

Proposed American National Standard for Information
Systems — Programming Language C++’. The last known
phone number: 202-626-5738. The last known price is $25.
Question 6: Is C++ backward compatible with ANSI-C?
Almost. C++ is as close as possible to compatible with
ANSI-C but no closer. In practice, the major difference is
that C++ requires prototypes, and that ‘f()’ declares a
function that takes no parameters, while ANSI-C rules state
that ‘f()’ declares a function that takes any number of
parameters of any type. There are some very subtle differ-
ences as well, like the sizeof a char literal being equal to the
sizeof a char (in ANSI-C, sizeof(‘x’) is the sizeof an int).
Structure ‘tags’ are in the same namespace as other names in
C++, but C++ has some warts to take care of backward
compatibility here.
Question 7: How long does it take to learn C++?
I and others teach standard industry ‘short courses’ (for those
not familiar with these, you pack a university semester ☛

PROGRAMMING

MUUG Lines 7 January 1994

seen both sides of reusable components (both how to code
from reuse, and how to code for reuse). It’s different in
every time I teach, but the ‘reuse’ aspect is rewarding, since
it has a large potential to improve software production’s
overall economics.

It takes 9 months to ‘master’ C++/OOP. Less if there is
already a body of experts and code that programmers have
regular access to, more if there isn’t a ‘good’ general purpose
C++ class library available.

Dr. Marshall P. Cline is the founder and President of
Paradigm Shift, Inc., a firm that specializes in on-site
training for C++, OOD, OOA, consulting, and reusable/
extensible C++ class libraries. For more information, send
e-mail to “info@parashift.com”. ✒

course into one 40hr work-week), and have found them
successful. However mastery takes experience, and there’s
no substitute for time. Laboratory time is essential for any
OOP course, since it allows concepts to ‘gel’.

Generally people start out wondering why the company
has devoted a full 5 days to something as trivial as another
programming language. Then about half way through, they
realize they’re not being taught just a new syntax, but an
entirely different way of thinking and programming and
designing and Then they begin to feel dumb, since they
can’t quite grasp what is being said. Then they get mad and
wonder why the course isn’t taught in two or three weeks
instead. Finally about Wednesday afternoon the lights go
‘clink’, and their faces brighten, and they ‘get it’. By Friday,
they’ve had numerous laboratory ‘experiments’ and they’ve

THE FORTUNE FILE

Dictionary of Evaluation Comments
Some of you might like to know what the supervisor is really

saying in all those glowing employee work performance evaluations
s/he keeps cranking out.

AVERAGE:
Not too bright.

EXCEPTIONALLY WELL QUALIFIED:
Has committed no major blunders to date.

ACTIVE SOCIALLY:
Drinks heavily.

ZEALOUS ATTITUDE:
Opinionated.

CHARACTER ABOVE REPROACH:
Still one step ahead of the law.

UNLIMITED POTENTIAL:
Will stick with us until retirement.

QUICK THINKING:
Offers plausible excuses for errors.

TAKES PRIDE IN WORK:
Conceited.

TAKES ADVANTAGE OF EVERY OPPORTUNITY TO
PROGRESS:

Buys drinks for superiors.
INDIFFERENT TO INSTRUCTION:

Knows more than superiors.
STERN DISCIPLINARIAN:

A real jerk.
TACTFUL IN DEALING WITH SUPERIORS:

Knows when to keep mouth shut.
APPROACHES DIFFICULT PROBLEMS WITH LOGIC:

Finds someone else to do the job.
A KEEN ANALYST:

Thoroughly confused.
NOT A DESK PERSON:

Did not go to college.
EXPRESSES SELF WELL:

Can string two sentences together.
SPENDS EXTRA HOURS ON THE JOB:

Miserable home life.
CONSCIENTIOUS AND CAREFUL:

Scared.
METICULOUS IN ATTENTION TO DETAIL:

A nitpicker.

DEMONSTRATES QUALITIES OF LEADERSHIP:
Has a loud voice.

JUDGEMENT IS USUALLY SOUND:
Lucky.

MAINTAINS PROFESSIONAL ATTITUDE:
A snob.

KEEN SENSE OF HUMOR:
Knows lots of dirty jokes.

STRONG ADHERENCE TO PRINCIPLES:
Stubborn.

SLIGHTLY BELOW AVERAGE:
Stupid.

OF GREAT VALUE TO THE ORGANIZATION:
Turns in work on time.

IS UNUSUALLY LOYAL:
Wanted by no-one else.

ALERT TO COMPANY DEVELOPMENTS:
An office gossip.

HARD WORKER:
Usually does it the hard way.

ENJOYS JOB:
Needs more to do.

HAPPY:
Paid too much.

WELL ORGANIZED:
Does too much busywork.

COMPETENT:
Is still able to get work done if supervisor helps.

CONSULTS WITH SUPERVISOR OFTEN:
Pain in the ass.

WILL GO FAR:
Relative of management.

SHOULD GO FAR:
Please.

USES TIME EFFECTIVELY:
Clock watcher.

VERY CREATIVE:
Finds 22 reasons to do anything except original work.

USES RESOURCES WELL:
Delegates everything.

DESERVES PROMOTION:
Create new title to make h/h feel appreciated. ✒

Original Author Unknown
Submitted by Andrew Trauzzi

PROGRAMMING

MUUG Lines 8 January 1994

HANDS-ON

UNIX Q&A
Originally Compiled by Ted Timar

Submitted by Andrew Trauzzi

UNIX Q&A is a monthly column that will hopefully answer some
commonly asked UNIX questions. If you have any specific UNIX
questions, please submit them to Monsieur Ex via e-mail
<m-ex@muug.mb.ca>.
Q1: How do I remove a file whose name begins with a “-”?
Figure out some way to name the file so that it doesn’t begin with a
dash. The simplest answer is to use

rm ./-filename
(assuming “-filename” is in the current directory, of course.)

This method of avoiding the interpretation of the “-” works with
other commands too.

Many commands, particularly those that have been written to
use the “getopt(3) ” argument parsing routine, accept a “-- ”
argument which means “this is the last option, anything after this is
not an option”, so your version of rm might handle
“ rm -- -filename ”. Some versions of rm that don’t use getopt()
treat a single “- ” in the same way, so you can also try
“ rm - -filename ”.
Q2: How do I remove a file with funny characters in the filename?
If the ‘funny character’ is a ‘/’, skip to the last part of this answer.
If the funny character is something else, such as a ‘ ’ (space) or
control character or character with the 8th bit set, keep reading.

The classic answers are
rm -i some*pattern*that*matches*only*the*file*you*want
which asks you whether you want to remove each file matching the
indicated pattern; depending on your shell, this may not work if the
filename has a character with the 8th bit set (the shell may strip that
off); and

rm -ri .
which asks you whether to remove each file in the directory.
Answer “y” to the problem file and “n” to everything else.
Unfortunately this doesn’t work with many versions of rm. Also
unfortunately, this will walk through every subdirectory of “.”, so
you might want to “chmod a-x ” those directories temporarily to
make them unsearchable.

Always take a deep breath and think about what you’re doing
and double check what you typed when you use rm’s “-r” flag or a
wildcard on the command line; and

find . -type f ... -ok rm ‘{}’ \;
where “...” is a group of predicates that uniquely identify the file.
One possibility is to figure out the inode number of the problem file
(use “ls -i . ”) and then use

find . -inum 12345 -ok rm ‘{}’ \;
or

find . -inum 12345 -ok mv ‘{}’ new-file-name \;
“-ok” is a safety check — it will prompt you for confirmation of the
command it’s about to execute. You can use “-exec” instead to
avoid the prompting, if you want to live dangerously, or if you
suspect that the filename may contain a funny character sequence
that will mess up your screen when printed.

What if the filename has a ‘/’ in it?
These files really are special cases, and can only be created by
buggy kernel code (typically by implementations of NFS that don’t
filter out illegal characters in file names from remote machines.)
The first thing to do is to try to understand exactly why this
problem is so strange.

Recall that Unix directories are simply pairs of filenames and
inode numbers. A directory essentially contains information like
this:

filename inode
file1 12345
file2.c 12349
file3 12347

Theoretically, ‘/’ and ‘\0’ are the only two characters that
cannot appear in a filename - ‘/’ because it’s used to separate
directories and files, and ‘\0’ because it terminates a filename.

Unfortunately some implementations of NFS will blithely
create filenames with embedded slashes in response to requests
from remote machines. For instance, this could happen when
someone on a Mac or other non-Unix machine decides to create a
remote NFS file on your Unix machine with the date in the
filename. Your Unix directory then has this in it:

filename inode
91/02/07 12357

No amount of messing around with ‘find ’ or ‘ rm’ as described
above will delete this file, since those utilities and all other Unix
programs, are forced to interpret the ‘/’ in the normal way.

Any ordinary program will eventually try to do unlink
(“91/02/07 ”), which as far as the kernel is concerned means “unlink
the file 07 in the subdirectory 02 of directory 91”, but that’s not
what we have - we have a FILE named “91/02/07 ” in the current
directory. This is a subtle but crucial distinction.

What can you do in this case? The first thing to try is to return
to the Mac that created his crummy entry, and see if you can
convince it and your local NFS daemon to rename the file to
something without slashes.

If that doesn’t work or isn’t possible, you’ll need help from
your system manager, who will have to try the one of the following.
Use “ls -i ” to find the inode number of this bogus file, then
unmount the file system and use “clri ” to clear the inode, and
“ fsck ” the file system with your fingers crossed. This destroys the
information in the file. If you want to keep it, you can try:

• create a new directory in the same parent directory as the one
containing the bad file name;

• move everything you can (i.e. everything but the file with the
bad name) from the old directory to the new one;

• do “ls -id ” on the directory containing the file with the bad
name to get its inumber;

• unmount the file system;
• “clri ” the directory containing the file with the bad name;
• “ fsck ” the file system.

Then, to find the file,
• remount the file system;
• rename the directory you created to have the name of the old
directory (since the old directory should have been blown
away by “fsck ”)

• move the file out of “lost+found ” into the directory with a
better name.

Alternatively, you can patch the directory the hard way by
crawling around in the raw file system. Use “fsdb ”, if you have it.

Next month we’ll look at some prompt hacks, as well as some shell
script advice. If you have any comments, or other methods of
solving the problems presented here, mail <editor@muug.mb.ca>. ✒

MUUG Lines 9 January 1994

 IBM’s OS/2 2.0 and lately 2.1 have been very successful in
offering INTEL based computer users many of the same things that
UNIX users have been enjoying for some time — truly useful utilities
for running UNIX style systems. This article details my experiences
with these tools, in case anyone out there is unwilling to forego the
DOS/Windows/OS/2 compatibility of OS/2 for a true UNIX system.

OS/2’s UNIX-like features
OS/2 is one of the first MS-DOS-derived operating systems to offer
the following:
True multitasking and process control

Formerly, so-called multitasking on MSDOS machines took
two forms — Desqview, which allowed pre-emptive
multitasking of DOS applications but little dependability and
protection from crashes, and Windows, which worked via non-
preemptive cooperative multitasking where each application
had to relinquish control of the system in turn before the next
task could execute. Programs where timing was critical (such
as downloading) suffered immensely when tasks monopolized
CPU time.

Long file names
The new High Performance File system (HPFS) unveiled in
OS/2 1.3 meant that UNIX applications could be ported far
more easily, avoiding DOS’s primitive CP/M-80 derived 8.3
naming convention for files and directories.

 32 bit addressing
While various kludges under DOS have allowed programmers
access to the new 32 bit addressing used on the 386 and greater
INTEL CPUs, OS/2 2.x has made this function more easily
obtainable, leading to ports of 32 bit tools for UNIX such as
GNU’s language products.

Software Development Tools
GNU C and C++

GNU’s C and C++ tools have been ported to OS/2 (as well as
DOS) and generate native 32 bit code, using a dynamic link
library (DLL) to provide kernel services for the programs.
Coupled with other GNU utilities, including make, info, man
and others, these tools permit OS/2 users to gain the
advantages of UNIX development under OS/2. Since the GCC
compiler is becoming a preferred compiler across UNIX
platforms as well, deployment of cross platform packages has
never been easier.

EMX
Extending the GNU utilities, emx allows OS/2 programmers
an inexpensive tool for developing true native 32 bit OS/2
programs, including Presentation Manager programs for OS/
2’s Graphical User Interface. Although the new System Object
Model is currently not supported, shutting programmers out of
the Workplace Shell object oriented user interface,
undoubtedly future versions will add this functionality.

Electronic Mail and News
UUPC/Extended

While this program has been available for DOS and OS/2 for
some time, OS/2’s new extended file naming capabilities
allowed more complete coverage of functions required for true
UUCP functions, such as downloading files with long names.

ELM
With long filenames, UNIX software such as ELM appeared
quickly, running ONLY under HPFS.

TRN
Since UUPC allows uucp file transfers, network news has
become available to all. TRN simply replaces the UUPC
RNEWS function to permit receipt and processing of USENET
newsgroups.

Miscellaneous Utilities
Networking

Software like IBM’s TCP/IP for OS/2, FTP’s PCTCP for OS/2
and several good XWindow servers for OS/2 have permitted
the deployment of OS/2 workstations in a UNIX environment
both as character and GUI workstations, easing the transition
of stand alone INTEL based PCs to a heterogeneous network
of mixed architecture workstations. UNIX based software
vendors such as PROGRESS have leveraged the widespread
use of Windows and DOS software to create highly functional
GUI applications for small systems that are clients for UNIX
servers.

emacs
Since GNU C has been ported, the GNU suite of tools was
soon to follow, led by a complete version of GNU emacs,
which requires HPFS to run.

cron
Rather than simply execute at a certain time functions that hid
in memory and grabbed control of the machine at predeter-
mined times, a number of cron work-alikes have arisen which
work almost exactly like the cron utilities under UNIX.

Shell and disk utilities
For UNIX users like myself, the availability of UNIX
programs like grep, ls, rm, troff and others allows easy
transition from UNIX during the daytime to OS/2 at home, as
well as in the office.

Where do you get these tools?
The major site for obtaining these tools is Hobbes, which can be
reached via FTP at ftp-os2.nmsu.edu. Hobbes maintains a huge
collection of OS/2 1.x and 2.x software as well as ports of numer-
ous standard UNIX utilities, including the bulk of the GNU utilities.

Conclusion
Although UNIX afficienados fervently hope that UNIX will prevail
in the desktop market, non-UNIX operating systems are rapidly
moving towards UNIX functionality. As more UNIX utilities are
ported, many users will easily grow into a situation where UNIX is
the most appropriate choice. In my own situation, where desktop
workstations running DOS and OS/2 are integral parts of the
movement towards client-server computing, availability of UNIX
tools like TCP/IP-based telnet and ftp, emacs, uucp and elm on my
OS/2 system at the office make moving between platforms
effortless.

At home, of course, I have begun using LINUX. A long time
OS/2 fan, I discovered that MOST of the software I use under OS/2
has been ported from UNIX, so LINUX fulfills my needs quite
nicely. However, as LINUX gains the ability to run DOS and Windows
software, my DOS partition will simply get smaller and smaller... ✒

OS/2 2.1 - UNIX Utilities Invade!
By Gord Tulloch

INDUSTRY

MUUG Lines 10 January 1994

MEETINGS

Coming Up

Meeting:
Next month’s meeting is scheduled for Tuesday,
February 8, at 7:30 PM. Meeting location will be the St-
Boniface Research Centre, as usual. The February
meeting topic is the Internet. Stay tuned for details.

Got any ideas for meeting topics? Any particular
speaker, company, or product you’d like to see at one of
our meetings? Just let our new meeting coordinator,
Roland Schneider, know. You can e-mail him at
<rsch@muug.mb.ca>.

Newsletter:
If you are interested in a particular topic, let me know.
I’m sure I could coerce you into writing an article! I
could use a few articles — especially shorter ones —
half a page to one page (400 to 1000 words) would be
fine.

Monsieur Ex has also let me know that his mail-box has
room for more of your wonderful queries again – please
submit your questions to the old guy via e-mail to <m-
ex@muug.mb.ca>. He may be old, but he’s not ready
for retirement yet!

Agenda
for

Tuesday, January 11, 1993, 7:30 PM
Samuel N. Cohen Auditorium

St-Boniface Hospital Research Centre
Main Floor, 351 Taché

1. President’s Welcome 7:30

2. Round Table 7:35

3. Business Meeting 8:00
a) Old Business
b) New Business

4. Coffee Break 8:30

5. Presented Topic 8:45
Hewlett-Packard discusses COSE —
The Common Open Software Environment
Stay tuned for details — watch muug.general
for updates, as they become available.

6. Adjourn 9:30

Note: Please try to arrive at the meeting between 7:15 and
7:30, to avoid disrupting the meeting in progress.

SIG Sideline
By Bary Finch, SIG Coordinator

It’s time to get back at it! We all had a good Christmas
vacation (I hope), including a break from our SIG meetings.
Now we’re ready to start up again.

We will be meeting at our usual place, ISM at 400
Ellice. It will also be the usual time of 7:30 p.m., on January
18. As usual this is the third Tuesday of the month. You can
just go to the front doors of ISM on Ellice, which are locked,
and you’ll be let in. Please arrive after 7:15 p.m., as that’s
when Wolfgang will be at the front doors to let you in. If you
arrive too early you may have a chilly wait!

We are arranging for a presentation this month, but we
still haven’t finalized the topic. The topic chosen will be
from the list of topics that I showed in last months SIG
Sideline. If there are any other topics that people would like
to see, let me know. Or if you have a presentation that you’d
like to do. We want to get as much participation by as many
people as we can.

We also may not have the presence of Greg’s Linux
luggable, as it had disk problems severe enough to disable it.
We’ll see what happens by Jan.18.

We have had good success with our single SIG, but if
anyone is interested in starting another SIG please contact
me. You would need to have someone that will volunteer as
the SIG Coordinator. This role entails coordinating the
meetings as well as preparing a monthly contribution to this
column. This will keep us all up to date on what’s happening
in the SIG. ✒

I was musing on similarities between Santa Claus and
system administrators. Consider:

• Santa is bearded, corpulent, and dresses funny.
• When you ask Santa for something, the odds of

receiving what you wanted are infinitesimal.
• Santa seldom answers your mail.
• When you ask Santa where he gets all the stuff he’s

got, he says, “Elves make it for me.”
• Santa doesn’t care about your deadlines.
• Your parents ascribed supernatural powers to Santa,

but did all the work themselves.
• Nobody knows who Santa has to answer to for his

actions.
• Santa laughs entirely too much.
• Santa thinks nothing of breaking into your $HOME.
• Only a lunatic says bad things about Santa in his

presence. ✒

Original Author Unknown
Submitted by Andrew Trauzzi

THE FORTUNE FILE

